IRE1α/NOX4 signaling pathway mediates ROS‐dependent activation of hepatic stellate cells in NaAsO 2 ‐induced liver fibrosis

2020 ◽  
Vol 236 (2) ◽  
pp. 1469-1480
Author(s):  
Ye Tao ◽  
Tianming Qiu ◽  
Xiaofeng Yao ◽  
Liping Jiang ◽  
Ningning Wang ◽  
...  
2021 ◽  
Author(s):  
Shuo Cong ◽  
Yongmei Liu ◽  
Yi Li ◽  
Yu Chen ◽  
Rui Chen ◽  
...  

Abstract Exploring the expression of miR-571 in patients with liver fibrosis and its role in the progression of liver fibrosis. A total of 74 patients with chronic hepatitis and cirrhosis accompanied by liver fibrosis in our institution from September to December 2018 were collected for study, and the expression of miR-571 in patients with different progressions of liver fibrosis was determined by RT-PCR and Western blot analysis. Set up Notch3 up group and Notch3 down regulated group, RT-PCR and Western blot were used to determine the effect of Notch signaling on the expression of fibrogenic α-SMA, collagen I. CCK-8, cell scratch assays, Transwell assays, flow cytometry were used to determine the effect of miR-571 on LX-2 proliferation, migration, apoptosis in human stem stellate cells, and RT-PCR, Western blot assays were performed to determine the effect of miR-571 on the Notch3 signaling pathway and the expression of profibrogenic factors. miR-571 is up-regulated in patients with liver fibrosis and is associated with the progression of liver fibrosis. Notch3 signaling pathway can promote the expression of fibroblast in human hepatic stellate cells; miR-571 can inhibit the apoptosis of human hepatic stellate cells, promote cell proliferation and migration; up regulation of miR-571 can promote the expression of Notch3 and Jagged 1; up regulation of miR-571 can also promote the expression of fibroblast. miR-571 can promote the activation of human stem stellate cells and the expression of fibroblasts through Notch 3 signaling pathway.


2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuo Cong ◽  
Yongmei Liu ◽  
Yi Li ◽  
Yu Chen ◽  
Rui Chen ◽  
...  

AbstractExploring the expression of miR-571 in patients with liver fibrosis and its role in the progression of liver fibrosis. A total of 74 patients with liver fibrosis in our institution from September to December 2018 were collected for study, and the expression of miR-571, Notch3 and Jagged1 in patients with different progressions of liver fibrosis was determined by RT-PCR and Western blot analysis. Set up Notch3 up group and Notch3 down regulated group, RT-PCR and Western blot were used to determine the effect of Notch signaling on the expression of fibrogenic factors. CCK-8, cell scratch assays, Transwell assays, flow cytometry were used to determine the effect of miR-571 on LX-2 proliferation, migration, apoptosis in human stem stellate cells, and RT-PCR, Western blot assays were performed to determine the effect of miR-571 on the Notch3 signaling pathway and the expression of profibrogenic factors. miR-571, Notch3 and Jagged1 are up-regulated in patients with liver fibrosis and is associated with the progression of liver fibrosis. Notch3 signaling pathway can promote the expression of fibroblast in human hepatic stellate cells; miR-571 can inhibit the apoptosis of human hepatic stellate cells, promote cell proliferation and migration; up regulation of miR-571 can promote the expression of Notch3 and Jagged1, and up-regulation of miR-571 also promoted the expression of related fibroblasts. MiR-571 can promote the activation of human stem cell stellate cells and the expression of fibroblast related factors through Notch3 signaling pathway.


BioFactors ◽  
2016 ◽  
Vol 43 (2) ◽  
pp. 272-282 ◽  
Author(s):  
Bárbara González-Fernández ◽  
Diana I. Sánchez ◽  
Irene Crespo ◽  
Beatriz San-Miguel ◽  
Marcelino Álvarez ◽  
...  

Author(s):  
Qi Yan ◽  
Linxin Pan ◽  
Shunli Qi ◽  
Fang Liu ◽  
Zhen Wang ◽  
...  

The therapeutic approach of liver fibrosis is still an unsolved clinical problem worldwide. Notably, the accumulation of extracellular matrix (ECM) in the liver is mediated by the production of cytokines and growth factors, such as transforming growth factor-β1 (TGF-β1) in hepatic stellate cells (HSCs). Ring finger protein 2 (RNF2) was identified as the catalytic subunit of polycomb repressive complex 1 (PRC1), mediating the monoubiquitination of histone H2A. In recent years, a growing amount of evidence suggests that RNF2 may play an important role in multiple pathological processes involved in cancer. Here, we explored the role of RNF2 in liver fibrogenesis and its potential mechanisms. The results showed that RNF2 was up-regulated in human fibrotic liver tissue. Knockdown of RNF2 led to a decreasing expression of collagen1 and α-smooth muscle actin (α-SMA) in LX-2 cells, which was upregulated by RNF2 overexpression. Moreover, RNF2 overexpression significantly promoted TGF-β1-induced LX-2 cell proliferation but decreased apoptosis. Furthermore, knockdown of RNF2 inhibited the activation of ERK/p38 signaling pathways induced by TGF-β1. These data suggested that RNF2 is an effective pro-fibrogenic factor for HSC activation via ERK/p38 signaling pathway. RNF2 inhibition might be a promising therapeutic target for liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document