scholarly journals RNF2 Mediates Hepatic Stellate Cells Activation by Regulating ERK/p38 Signaling Pathway in LX-2 Cells

Author(s):  
Qi Yan ◽  
Linxin Pan ◽  
Shunli Qi ◽  
Fang Liu ◽  
Zhen Wang ◽  
...  

The therapeutic approach of liver fibrosis is still an unsolved clinical problem worldwide. Notably, the accumulation of extracellular matrix (ECM) in the liver is mediated by the production of cytokines and growth factors, such as transforming growth factor-β1 (TGF-β1) in hepatic stellate cells (HSCs). Ring finger protein 2 (RNF2) was identified as the catalytic subunit of polycomb repressive complex 1 (PRC1), mediating the monoubiquitination of histone H2A. In recent years, a growing amount of evidence suggests that RNF2 may play an important role in multiple pathological processes involved in cancer. Here, we explored the role of RNF2 in liver fibrogenesis and its potential mechanisms. The results showed that RNF2 was up-regulated in human fibrotic liver tissue. Knockdown of RNF2 led to a decreasing expression of collagen1 and α-smooth muscle actin (α-SMA) in LX-2 cells, which was upregulated by RNF2 overexpression. Moreover, RNF2 overexpression significantly promoted TGF-β1-induced LX-2 cell proliferation but decreased apoptosis. Furthermore, knockdown of RNF2 inhibited the activation of ERK/p38 signaling pathways induced by TGF-β1. These data suggested that RNF2 is an effective pro-fibrogenic factor for HSC activation via ERK/p38 signaling pathway. RNF2 inhibition might be a promising therapeutic target for liver fibrosis.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qi Wang ◽  
Song Wei ◽  
Lei Li ◽  
Qingfa Bu ◽  
Haoming Zhou ◽  
...  

AbstractLiver fibrosis is a patho-physiological process which can develop into cirrhosis, and hepatic carcinoma without intervention. Our study extensively investigated the mechanisms of lncRNA NEAT1 and miR-139-5p in regulating liver fibrosis progression. Our results demonstrated that the expression of lncRNA NEAT1 was increased and the expression of miR-139-5p was decreased in fibrotic liver tissues. LncRNA NEAT1 could sponge miR-139-5p and promoted hepatic stellate cells (HSCs) activation by directly inhibiting the expression of miR-139-5p. The co-localization of lncRNA NEAT1 with miR-139-5p was shown in the cytosols of activated HSCs. miR-139-5p upregulation could suppress the expression of β-catenin. The overexpression of β-catenin promoted HSCs activation. Moreover, we found that β-catenin could interact with SOX9 promoted HSCs activation. Our further studies demonstrated that SOX9 could bind with the TGF-β1 promoter and promoted the transcription activity of TGF-β1. The upregulation of TGF-β1 further promoted HSCs activation. In vivo study also suggested that lncRNA NEAT1 knockdown and miR-139-5p overexpression alleviated murine liver fibrosis. LncRNA NEAT1 exacerbated liver fibrosis by suppressing the expression of miR-139-5p. Collectively, our study suggested that miR-139-5p sponged by lncRNA NEAT1 regulated liver fibrosis via targeting β-catenin/SOX9/TGF-β1 Pathway.


Author(s):  
Seung Jung Kim ◽  
Kyu Min Kim ◽  
Ji Hye Yang ◽  
Sam Seok Cho ◽  
Eun Hee Jeong ◽  
...  

Abstract Hepatic stellate cells (HSCs) are major contributors to hepatic fibrogenesis facilitating liver fibrosis. FoxO3a is a member of the forkhead transcription factor family, which mediates cell proliferation and differentiation. However, the expression and function of FoxO3a during HSC activation remain largely unknown. FoxO3a overexpression was related to fibrosis in patients, and its expression was colocalized with desmin or α-smooth muscle actin, representative HSC markers. We also observed upregulated FoxO3a levels in two animal hepatic fibrosis models, a carbon tetrachloride (CCl4)-injected model and a bile duct ligation model. In addition, TGF-β treatment in mouse primary HSCs or LX-2 cells elevated FoxO3a expression. When FoxO3a was upregulated by TGF-β in LX-2 cells, both the cytosolic and nuclear levels of FoxO3a increased. In addition, we found that the induction of FoxO3a by TGF-β was due to both transcriptional and proteasome-dependent mechanisms. Moreover, FoxO3a overexpression promoted TGF-β-mediated Smad activation. Furthermore, FoxO3a increased fibrogenic gene expression, which was reversed by FoxO3a knockdown. TGF-β-mediated FoxO3a overexpression in HSCs facilitated hepatic fibrogenesis, suggesting that FoxO3a may be a novel target for liver fibrosis prevention and treatment.


2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingchun Zhao ◽  
Xinglong Liu ◽  
Chuanbo Ding ◽  
Yan Gu ◽  
Wencong Liu

As a natural active substance, dihydromyricetin (DHM) has been proven to have good hepatoprotective activity. However, the therapeutic effect of DHM on liver fibrosis, which has become a liver disease threatening the health of people around the world, has not been studied to date. The purpose of this study was to investigate the effect of DHM as a new nutritional supplement on thioacetamide (TAA)-induced liver fibrosis. The liver fibrosis model was established by intraperitoneal injection of TAA (200 mg/kg, every 3 days) for 8 weeks, and oral administration of DHM (20 mg/kg and 40 mg/kg, daily) after 4 weeks of TAA-induced liver fibrosis. The results showed that DHM treatment significantly inhibited the activities of alanine aminotransferase (ALT) (37.81 ± 7.62 U/L) and aspartate aminotransferase (AST) (55.18 ± 10.94 U/L) in serum of liver fibrosis mice, and increased the levels of superoxide dismutase (SOD) and glutathione (GSH) while reversed the level of malondialdehyde (MDA). In addition, histopathological examination illustrated that TAA induced the inflammatory infiltration, apoptosis and fibroatherosclerotic deposition in liver, which was further confirmed by western-blot and immunofluorescence staining. Moreover, DHM inhibited hepatocyte apoptosis by regulating the phosphorylation level of phosphatidylinositol 3-kinase (PI3K), protein kinase-B (AKT) and its downstream apoptotic protein family. Interestingly, immunofluorescence staining showed that DHM treatment significantly inhibited alpha smooth muscle actin (α-SMA), which was a marker of hepatic stellate cell activation, and regulated the expression of transforming growth factor (TGF-β1). Importantly, supplementation with DHM significantly inhibited the release of nuclear factor kappa-B (NF-κB) signaling pathway and pro-inflammatory factors in liver tissue induced by TAA, and improved liver fiber diseases, such as tumor necrosis factor alpha (TNF-α) and recombinant rat IL-1β (IL-1β). In conclusion, the evidence of this study revealed that DHM is a potential hepatoprotective and health factor, and which also provides the possibility for the treatment of liver fibrosis.


2021 ◽  
Author(s):  
Zuoning Han ◽  
Yanling Ma ◽  
Gary Cao ◽  
Zhengping Ma ◽  
Ruihua Chen ◽  
...  

Hepatic stellate cells (HSCs) are thought to play key roles in the development of liver fibrosis.  Extensive evidence has established the concept that αV integrins are involved in the activation of latent transforming growth factor β (TGF-β), a master regulator of the fibrotic signaling cascade.  Based on mRNA and protein expression profiling data, we found that αVβ1 integrin is the most abundant member of the αV integrin family in either quiescent or TGF-β1-activated primary human HSCs.  Unexpectedly, either a selective αVβ1 inhibitor, Compound 8 (C8), or a pan-αV integrin inhibitor, GSK3008348, decreased TGF-β1-activated procollagen I production in primary human HSCs, in which the role of β1 integrin was confirmed by ITGB1 siRNA. In contrast to an Activin receptor-like kinase 5 (Alk5) inhibitor, C8 and GSK3008348 failed to inhibit TGF-β1 induced SMAD3 and SMAD2 phosphorylation, but inhibited TGF-β-induced phosphorylation of ERK1/2 and STAT3, suggesting that αVβ1 integrin is involved in non-canonical TGF-β signaling pathways. Consistently, ITGB1 siRNA significantly decreased phosphorylation of ERK1/2. Furthermore, a selective inhibitor of MEK1/2 blocked TGF-β1 induced phosphorylation of ERK1/2 and decreased TGF-β1 induced procollagen I production, while a specific inhibitor of STAT3 had no effect on TGF-β1 induced procollagen I production.  Taken together, current data indicate that αVβ1 integrin can regulate TGF-β signaling independent of its reported role in activating latent TGF-β.  Our data further support that αVβ1 inhibition is a promising therapeutic target for the treatment of liver fibrosis.


2017 ◽  
Vol 43 (6) ◽  
pp. 2242-2252 ◽  
Author(s):  
Fujun Yu ◽  
BiCheng Chen ◽  
XuFei Fan ◽  
Guojun Li ◽  
Peihong Dong ◽  
...  

Background/Aims: Recently, microRNAs (miRNAs) have been demonstrated to act as regulators of activation of hepatic stellate cells (HSCs). It is well known that the main profibrogenic inducer transforming growth factor-β1 (TGF-β1) contributes to HSC activation, which is a key event in liver fibrosis. Increasing studies show that miR-9-5p is down-regulated in liver fibrosis and restoration of miR-9-5p limits HSC activation. However, the role of miR-9-5p in TGF-β1-induced HSC activation is still not clear. Methods: miR-9-5p expression was quantified using real-time PCR in chronic hepatitis B (CHB) patients and TGF-β1-treated LX-2 cells. In CHB patients, histological activity index (HAI) and fibrosis stages were assessed using the Ishak scoring system. Effects of miR-9-5p on liver fibrosis in vivo and in vitro were analyzed. Luciferase activity assays were performed to examine the binding of miR-9-5p to the 3′-untranslated region of type I TGF-β receptor (TGFBR1) as well as TGFBR2. Results: Compared with healthy controls, miR-9-5p was reduced in CHB patients. There was a lower miR-9-5p expression in CHB patients with higher fibrosis scores or HAI scores. miR-9-5p was down-regulated by TGF-β1 in a dose-dependent manner. TGF-β1-induced HSC activation including cell proliferation, α-SMA and collagen expression was blocked down by miR-9-5p. Notably, miR-9-5p ameliorates carbon tetrachloride-induced liver fibrosis. As determined by luciferase activity assays, TGFBR1 and TGFBR2 were targets of miR-9-5p. Further studies demonstrated that miR-9-5p inhibited TGF-β1/Smads pathway via TGFBR1 and TGFBR2. Interestingly, promoter methylation was responsible for miR-9-5p down-regulation in liver fibrosis. The relationship between miR-9-5p expression and methylation was confirmed in CHB patients and TGF-β1-treated cells. Conclusion: Our results demonstrate that miR-9-5p could inhibit TGF-β1-induced HSC activation through TGFBR1 and TGFBR2. Loss of miR-9-5p is associated with its methylation status in liver fibrosis.


2016 ◽  
Vol 39 (6) ◽  
pp. 2409-2420 ◽  
Author(s):  
Fujun Yu ◽  
XuFei Fan ◽  
Bicheng Chen ◽  
Peihong Dong ◽  
Jianjian Zheng

Background/Aims: Wnt/β-catenin pathway is involved in liver fibrosis and microRNAs (miRNAs) are considered as key regulators of the activation of hepatic stellate cells (HSCs). A recent study showed the protective role of miR-378a-3p against cardiac fibrosis. However, whether miR-378a-3p suppresses Wnt/β-catenin pathway in liver fibrosis is largely unknown. Methods: miR-378a-3p expression was detected in carbon tetrachloride-induced liver fibrosis and activated HSCs. Effects of miR-378a-3p overexpression on HSC activation and Wnt/β-catenin pathway were analyzed. Bioinformatic analysis was employed to identify the potential targets of miR-378a-3p. Serum miR-378a-3p expression was analyzed in patients with cirrhosis. Results: Reduced miR-378a-3p expression was observed in the fibrotic liver tissues and activated HSCs. Up-regulation of miR-378a-3p inhibited HSC activation including cell proliferation, α-smooth muscle actin (α-SMA) and collagen expression. Moreover, miR-378a-3p overexpression resulted in Wnt/β-catenin pathway inactivation. Luciferase reporter assays demonstrated that Wnt10a, a member of Wnt/β-catenin pathway, was confirmed to be a target of miR-378a-3p. By contrast, miR-378a-3p inhibitor contributed to HSC activation, with an increase in cell proliferation, α-SMA and collagen expression. But all these effects were blocked down by silencing of Wnt10a. Notably, sera from patients with cirrhosis contained lower levels of miR-378a-3p than sera from healthy controls. Receiver operating characteristic curve analysis suggested that serum miR-378a-3p differentiated liver cirrhosis patients from healthy controls, with an area under the curve of ROC curve of 0.916. Conclusion: miR-378a-3p suppresses HSC activation, at least in part, via targeting of Wnt10a, supporting its potential utility as a novel therapeutic target for liver fibrosis.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Hui Yang ◽  
Li Zhang ◽  
Jie Chen ◽  
Xiaoqian Zhang ◽  
Zhongfu Zhao ◽  
...  

Background. Hepatic stellate cells (HSCs) are reported to play significant roles in the development of liver fibrosis. Heme oxygenase-1 (HO-1) is a key rate-limiting enzyme, which could decrease collagen synthesis and liver damage. Nevertheless, it was yet elusive towards the function and mechanism of HO-1. Methods. An HO-1 inducer Hemin or an HO-1 inhibitor ZnPP-IX was used to treat the activated HSC-T6, respectively. MTT assay was adopted to detect cell proliferation. Immunocytochemical staining was employed to test the levels of alpha-smooth muscle actin (α-SMA), peroxisome proliferator-activated receptor-γ (PPARγ), and nuclear factor-kappa B (NF-kappa B) levels in HSC-T6. HO-1, PPARγ, and NF-κB expression levels were measured by qRT-PCR and Western blotting. ELISA was then used to detect the levels of transforming growth factor- (TGF-) beta 1 (TGF-β1), interleukin-6 (IL-6), serum hyaluronic acid (HA), and serum type III procollagen aminopeptide (PIIIP). Results. HSC-T6 proliferation was inhibited in Hemin-treated HSCs. The levels of α-SMA, HA, and PIIIP and the production of ECM were lower in Hemin-treated HSCs, whereas those could be rescued by ZnPP-IX. NF-κB activation was decreased, but PPARγ expression was increased after HO-1 upregulation. Furthermore, the levels of TGF-β1 and IL-6, which were downstream of activated NF-κB in HSC-T6, were reduced. The PPAR-specific inhibitor GW9662 could block those mentioned effects. Conclusions. Our data demonstrated that HO-1 induction could inhibit HSC proliferation and activation by regulating PPARγ expression and NF-κB activation directly or indirectly, which makes it a promising therapeutic target for liver fibrosis.


2009 ◽  
Vol 296 (6) ◽  
pp. G1248-G1257 ◽  
Author(s):  
Azuma Watanabe ◽  
Muhammad Adnan Sohail ◽  
Dawidson Assis Gomes ◽  
Ardeshir Hashmi ◽  
Jun Nagata ◽  
...  

The inflammasome is a cytoplasmic multiprotein complex that has recently been identified in immune cells as an important sensor of signals released by cellular injury and death. Analogous to immune cells, hepatic stellate cells (HSC) also respond to cellular injury and death. Our aim was to establish whether inflammasome components were present in HSC and could regulate HSC functionality. Monosodium urate (MSU) crystals (100 μg/ml) were used to experimentally induce inflammasome activation in LX-2 and primary mouse HSC. Twenty-four hours later primary mouse HSC were stained with α-smooth muscle actin and visualized by confocal microscopy, and TGF-β and collagen1 mRNA expression was quantified. LX-2 cells were further cultured with or without MSU crystals for 24 h in a transwell chemotaxis assay with PDGF as the chemoattractant. We also examined inhibition of calcium (Ca2+) signaling in LX-2 cells treated with or without MSU crystals using caged inositol 1,4,5-triphosphate (IP3). Finally, we confirmed an important role of the inflammasome in experimental liver fibrosis by the injection of carbon tetrachloride (CCl4) or thioacetamide (TAA) in wild-type mice and mice lacking components of the inflammasome. Components of the inflammasome are expressed in LX-2 cells and primary HSC. MSU crystals induced upregulation of TGF-β and collagen1 mRNA and actin reorganization in HSCs from wild-type mice but not mice lacking inflammasome components. MSU crystals inhibited the release of Ca2+ via IP3 in LX-2 cells and also inhibited PDGF-induced chemotaxis. Mice lacking the inflammasome-sensing and adaptor molecules, NLRP3 and apoptosis-associated speck-like protein containing CARD, had reduced CCl4 and TAA-induced liver fibrosis. We concluded that inflammasome components are present in HSC, can regulate a variety of HSC functions, and are required for the development of liver fibrosis.


2021 ◽  
pp. 002215542110536
Author(s):  
Ikuyo Inoue ◽  
Xian-Yang Qin ◽  
Takahiro Masaki ◽  
Yoshihiro Mezaki ◽  
Tomokazu Matsuura ◽  
...  

Transforming growth factor-β (TGF-β) activation is involved in various pathogeneses, such as fibrosis and malignancy. We previously showed that TGF-β was activated by serine protease plasma kallikrein-dependent digestion of latency-associated peptides (LAPs) and developed a method to detect LAP degradation products (LAP-DPs) in the liver and blood using specific monoclonal antibodies. Clinical studies have revealed that blood LAP-DPs are formed in the early stages of liver fibrosis. This study aimed to identify the cell source of LAP-DP formation during liver fibrosis. The N-terminals of LAP-DPs ending at residue Arg58 (R58) were stained in liver sections of a bile duct-ligated liver fibrosis model at 3 and 13 days. R58 LAP-DPs were detected in quiescent hepatic stellate cells at day 3 and in macrophages on day 13 after ligation of the bile duct. We then performed a detailed analysis of the axial localization of R58 signals in a single macrophage, visualized the cell membrane with the anti-CLEC4F antibody, and found R58 LAP-DPs surrounded by the membrane in phagocytosed debris that appeared to be dead cells. These findings suggest that in the early stages of liver fibrosis, TGF-β is activated on the membrane of stellate cells, and then the cells are phagocytosed after cell death: (J Histochem Cytochem XX:XXX–XXX, XXXX)


Sign in / Sign up

Export Citation Format

Share Document