scholarly journals Novel compound heterozygous CPLANE1 variants identified in a Chinese family with Joubert syndrome

Author(s):  
Cheng Zhang ◽  
Zhenchao Sun ◽  
Lulu Xu ◽  
Fengyuan Che ◽  
Shiguo Liu

Dermatology ◽  
2013 ◽  
Vol 226 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Shuang Wang ◽  
Chen Tu ◽  
Yiguo Feng ◽  
Xiaopeng Wang ◽  
Dingwei Zhang ◽  
...  


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124757 ◽  
Author(s):  
Xue Gao ◽  
Yu Su ◽  
Yu-Lan Chen ◽  
Ming-Yu Han ◽  
Yong-Yi Yuan ◽  
...  


2018 ◽  
Vol 12 (5) ◽  
pp. 502-506 ◽  
Author(s):  
Xuelei Zhao ◽  
Xiaohua Cheng ◽  
Lihui Huang ◽  
Xianlei Wang ◽  
Cheng Wen ◽  
...  


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yue Qiu ◽  
Sen Chen ◽  
Xia Wu ◽  
Wen-Juan Zhang ◽  
Wen Xie ◽  
...  

Jervell and Lange-Nielsen syndrome (JLNS) is a rare but severe autosomal recessive disease characterized by profound congenital deafness and a prolonged QTc interval (greater than 500 milliseconds) in the ECG waveforms. The prevalence of JLNS is about 1/1000000 to 1/200000 around the world. However, exceed 25% of JLNS patients suffered sudden cardiac death with kinds of triggers containing anesthesia. Approximately 90% of JLNS cases are caused by KCNQ1 gene mutations. Here, using next-generation sequencing (NGS), we identified a compound heterozygosity for two mutations c.1741A>T (novel) and c.477+5G>A (known) in KCNQ1 gene as the possible pathogenic cause of JLNS, which suggested a high risk of cardiac events in a deaf child. The hearing of this patient improved significantly with the help of cochlear implantation (CI). But life-threatening arrhythmias occurred with a trigger of anesthesia after the end of the CI surgery. Our findings extend the KCNQ1 gene mutation spectrum and contribute to the management of deaf children diagnosed with JLNS for otolaryngologists (especially cochlear implant teams).



2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Chunli Wei ◽  
Ting Xiao ◽  
Jingliang Cheng ◽  
Jiewen Fu ◽  
Qi Zhou ◽  
...  

Abstract As a genetically heterogeneous ocular dystrophy, gene mutations with autosomal recessive retinitis pigmentosa (arRP) in patients have not been well described. We aimed to detect the disease-causing genes and variants in a Chinese arRP family. In the present study, a large Chinese pedigree consisting of 31 members including a proband and another two patients was recruited; clinical examinations were conducted; next-generation sequencing using a gene panel was used for identifying pathogenic genes, and Sanger sequencing was performed for verification of mutations. Novel compound heterozygous variants c.G2504A (p.C835Y) and c.G6557A (p.G2186E) for the EYS gene were identified, which co-segregated with the clinical RP phenotypes. Sequencing of 100 ethnically matched normal controls didn’t found these mutations in EYS. Therefore, our study identified pathogenic variants in EYS that may cause arRP in this Chinese family. This is the first study to reveal the novel mutation in the EYS gene (c.G2504A, p.C835Y), extending its mutation spectrum. Thus, the EYS c.G2504A (p.C835Y) and c.G6557A (p.G2186E) variants may be the disease-causing missense mutations for RP in this large arRP family. These findings should be helpful for molecular diagnosis, genetic counseling and clinical management of arRP disease.



2018 ◽  
Vol 39 (4) ◽  
pp. 517-521 ◽  
Author(s):  
Nian Zhang ◽  
Juan Wang ◽  
Shuting Liu ◽  
Mugen Liu ◽  
Fagang Jiang


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Sha Zhao ◽  
Zhenqing Luo ◽  
Zhenghui Xiao ◽  
Liping Li ◽  
Rui Zhao ◽  
...  

Abstract Background Cohen syndrome (CS) is an uncommon developmental disease with evident clinical heterogeneity. VPS13B is the only gene responsible for CS. Only few sporadic cases of CS have been reported in China. Case presentation A Chinese family with two offspring–patients affected by developmental delay and intellectual disability was investigated in this study. Exome sequencing was performed, and compound heterozygous mutations in VPS13B were segregated for family members with autosomal recessive disorder. Splicing mutation c.3666 + 1G > T (exon 24) and nonsense mutation c. 9844 A > T:p.K3282X (exon 54) were novel. We revisited the family and learned that both patients are affected by microcephaly, developmental delay, neutropenia, and myopia and have a friendly disposition, all of which are consistent with CS phenotypes. We also found that both patients have hyperlinear palms, which their parents do not have. VPS13B mutations reported among the Chinese population were reviewed accordingly. Conclusions This study presents two novel VPS13B mutations in CS. The identification of hyperlinear palms in a family affected by CS expands the phenotype spectrum of CS.



2019 ◽  
Vol 10 ◽  
Author(s):  
Rongrong Wang ◽  
Shirui Han ◽  
Hongyan Liu ◽  
Amjad Khan ◽  
Habulieti Xiaerbati ◽  
...  


2019 ◽  
Vol 10 ◽  
Author(s):  
Tim Ott ◽  
Lilian Kaufmann ◽  
Martin Granzow ◽  
Katrin Hinderhofer ◽  
Claus R. Bartram ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document