Trans‐seasonal activation of the neuroendocrine reproductive axis: Low‐temperature winter dormancy modulates gonadotropin‐releasing hormone neurons in garter snakes

Author(s):  
Deborah I. Lutterschmidt ◽  
Ashley R. Lucas ◽  
Andrew R. Summers
Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 463-468 ◽  
Author(s):  
Elizabeth P. Bless ◽  
Heather J. Walker ◽  
Kwok W. Yu ◽  
J. Gabriel Knoll ◽  
Suzanne M. Moenter ◽  
...  

Neurons that synthesize GnRH control the reproductive axis and migrate over long distances and through different environments during development. Prior studies provided strong clues for the types of molecules encountered and movements expected along the migratory route. However, our studies provide the first real-time views of the behavior of GnRH neurons in the context of an in vitro preparation that maintains conditions comparable to those in vivo. The live views provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more changes in direction after they enter the brain. Perturbations of guiding fibers distal to moving GnRH neurons in the nasal compartment influenced movement without detectable changes in the fibers in the immediate vicinity of moving GnRH neurons. This suggests that the use of fibers by GnRH neurons for guidance may entail selective signaling in addition to mechanical guidance. These studies establish a model to evaluate the influences of specific molecules that are important for their migration.


1998 ◽  
Vol 69 (3) ◽  
pp. 443-449 ◽  
Author(s):  
Marco Filicori M.D. ◽  
Graciela E Cognigni M.D. ◽  
Rossella Arnone M.D. ◽  
Patrizia Pocognoli M.D. ◽  
Cristina Tabarelli M.D. ◽  
...  

2018 ◽  
Author(s):  
C M Schooling ◽  
Jack C M Ng

BackgroundAccording to well-established evolutionary biology theory reproduction trades-off against longevity, implying that upregulating the reproductive axis might drive major diseases. We assessed whether the central driver of reproduction gonadotropin-releasing hormone 1 (GnRH1) had a causal effect on the leading cause of global morbidity and mortality, i.e. ischemic heart disease (IHD). As a contrast we similarly examined the role of GnRH2 because it is more a driver of female sexual behavior.MethodsWe applied strong (p-value <5×10−6) and independent genetic predictors of GnRH1 and GnRH2 to an extensively genotyped IHD case (n=76,014) - control (n=264,785) study using multiplicative random effects inverse variance weighted (IVW), weighted median, MR-Egger and MR-PRESSO estimates.ResultsGnRH1, predicted by 11 genetic variants, was positively associated with IHD (IVW odds ratio (OR) 1.04 per effect size, 95% confidence interval (CI) 1.01 to 1.08), but GnRH2, predicted by 15 genetic variants, was not (IVW OR 0.98, 95% CI 0.95 to 1.02).ConclusionsGnRH1 is a potential IHD genetic target. Apart from demonstrating a central tenet of evolutionary biology in humans, our study suggests that existing treatments and environmental factors targeting GnRH1, its drivers or consequences could be re-purposed to prevent and treat IHD. Given, the importance of reproduction to the human species, many such exposures likely exist.


2019 ◽  
Vol 37 (03) ◽  
pp. 109-118 ◽  
Author(s):  
Silvia Leon ◽  
Víctor M. Navarro

AbstractThe tachykinin family of peptides, composed of the neurokinins A and B (NKA, NKB) and substance P are involved in the central control of gonadotropin-releasing hormone (GnRH) release through a variety of neuronal circuitries that mediate the activation of Kiss1 neurons and the synchronization of their activity within the arcuate nucleus. The major outcome of this role is the precise regulation of the pulsatile pattern of GnRH release. In addition, tachykinins are involved in the maturation of the reproductive axis by determining the optimal timing of puberty onset, as well as in the timing of the preovulatory luteinizing hormone surge in females. Therefore, the action of tachykinins in reproduction appears to extend to all the critical aspects required for the successful attainment and maintenance of fertility. In this review, we summarize the latest advances in our understanding of the biology of tachykinins in the control of GnRH release, addressing the existing controversies, open questions, and future perspectives.


2000 ◽  
Vol 78 (3) ◽  
pp. 261-279 ◽  
Author(s):  
Chun Peng ◽  
Spencer T Mukai

Activins are growth and differentiation factors belonging to the transforming growth factor-β superfamily. They are dimeric proteins consisting of two inhibin β subunits. The structure of activins is highly conserved during vertebrate evolution. Activins signal through type I and type II receptor proteins, both of which are serine/threonine kinases. Subsequently, downstream signals such as Smad proteins are phosphorylated. Activins and their receptors are present in many tissues of mammals and lower vertebrates where they function as autocrine and (or) paracrine regulators of a variety of physiological processes, including reproduction. In the hypothalamus, activins are thought to stimulate the release of gonadotropin-releasing hormone. In the pituitary, activins increase follicle-stimulating hormone secretion and up-regulate gonadotropin-releasing hormone receptor expression. In the ovaries of vertebrates, activins are expressed predominantly in the follicular layer of the oocyte where they regulate processes such as folliculogenesis, steroid hormone production, and oocyte maturation. During pregnancy, activin-A is also involved in the regulation of placental functions. This review provides a brief overview of activins and their receptors, including their structures, expression, and functions in the female reproductive axis as well as in the placenta. Special effort is made to compare activins and their receptors in different vertebrates. Key words: activins, activin receptors, reproductive axis, placenta.


2020 ◽  
Vol 21 (24) ◽  
pp. 9511
Author(s):  
Fabrizio Fontana ◽  
Monica Marzagalli ◽  
Marina Montagnani Marelli ◽  
Michela Raimondi ◽  
Roberta Moretti ◽  
...  

Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.


Sign in / Sign up

Export Citation Format

Share Document