Direct cell-cell interactions control apoptosis and oligodendrocyte marker expression of neuroepithelial cells

2001 ◽  
Vol 65 (3) ◽  
pp. 195-207 ◽  
Author(s):  
J.P. Hugnot ◽  
K. Mellodew ◽  
H. Pilcher ◽  
D. Uwanogho ◽  
J. Price ◽  
...  
Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1235-1246 ◽  
Author(s):  
J. Malicki ◽  
W. Driever

Mutations of the oko meduzy (ome) locus cause drastic neuronal patterning defect in the zebrafish retina. The precise, stratified appearance of the wild-type retina is absent in the mutants. Despite the lack of lamination, at least seven retinal cell types differentiate in oko meduzy. The ome phenotype is already expressed in the retinal neuroepithelium affecting morphology of the neuroepithelial cells. Our experiments indicate that previously unknown cell-cell interactions are involved in development of the retinal neuroepithelial sheet. In genetically mosaic animals, cell-cell interactions are sufficient to rescue the phenotype of oko meduzy retinal neuroepithelial cells. These cell-cell interactions may play a critical role in the patterning events that lead to differentiation of distinct neuronal laminae in the vertebrate retina.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xia Han ◽  
Jifan Feng ◽  
Tingwei Guo ◽  
Yong-Hwee Eddie Loh ◽  
Yuan Yuan ◽  
...  

Cranial neural crest (CNC) cells give rise to bone, cartilage, tendons, and ligaments of the vertebrate craniofacial musculoskeletal complex, as well as regulate mesoderm-derived craniofacial muscle development through cell-cell interactions. Using the mouse soft palate as a model, we performed an unbiased single-cell RNA-seq analysis to investigate the heterogeneity and lineage commitment of CNC derivatives during craniofacial muscle development. We show that Runx2, a known osteogenic regulator, is expressed in the CNC-derived perimysial and progenitor populations. Loss of Runx2 in CNC-derivatives results in reduced expression of perimysial markers (Aldh1a2 and Hic1) as well as soft palate muscle defects in Osr2-Cre;Runx2fl/fl mice. We further reveal that Runx2 maintains perimysial marker expression through suppressing Twist1, and that myogenesis is restored in Osr2-Cre;Runx2fl/fl;Twist1fl/+ mice. Collectively, our findings highlight the roles of Runx2, Twist1, and their interaction in regulating the fate of CNC-derived cells as they guide craniofacial muscle development through cell-cell interactions.


2015 ◽  
Vol 46 (1) ◽  
pp. 38-45
Author(s):  
V. Ya. Brodskii ◽  
N. P. Sharova ◽  
L. A. Mal’chenko ◽  
D. S. Konchenko ◽  
T. K. Dubovaya ◽  
...  

2017 ◽  
Vol 114 (21) ◽  
pp. 5467-5472 ◽  
Author(s):  
Li He ◽  
Jiuhong Huang ◽  
Norbert Perrimon

Detection and manipulation of direct cell–cell contact in complex tissues is a fundamental and challenging problem in many biological studies. Here, we report an optimized Notch-based synthetic receptor (synNQ) useful to study direct cell–cell interactions in Drosophila. With the synNQ system, cells expressing a synthetic receptor, which contains Notch activation machinery and a downstream transcriptional activator, QF, are activated by a synthetic GFP ligand expressed by contacting neighbor cells. To avoid cis-inhibition, mutually exclusive expression of the synthetic ligand and receptor is achieved using the “flippase-out” system. Expression of the synthetic GFP ligand is controlled by the Gal4/UAS system for easy and broad applications. Using synNQ, we successfully visualized cell–cell interactions within and between most fly tissues, revealing previously undocumented cell–cell contacts. Importantly, in addition to detection of cells in contact with one another, synNQ allows for genetic manipulation in all cells in contact with a targeted cell population, which we demonstrate in the context of cell competition in developing wing disks. Altogether, the synNQ genetic system will enable a broad range of studies of cell contact in developmental biology.


2007 ◽  
Vol 2 (S 1) ◽  
Author(s):  
I Lukic ◽  
S Stoyanov ◽  
A Erhardt ◽  
P Nawroth ◽  
A Bierhaus

Sign in / Sign up

Export Citation Format

Share Document