Biological control of fungal pathogens of tomato ( Lycopersicon esculentum ) by chitinolytic bacterial strains

Author(s):  
Muhammad Saqib Malik ◽  
Shabeer Haider ◽  
Abdul Rehman ◽  
Shafiq Ur Rehman ◽  
Muhammad Jamil ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Dominik Bleša ◽  
Pavel Matušinský ◽  
Romana Sedmíková ◽  
Milan Baláž

The use of biological control is becoming a common practice in plant production. One overlooked group of organisms potentially suitable for biological control are Rhizoctonia-like (Rh-like) fungi. Some of them are capable of forming endophytic associations with a large group of higher plants as well as mycorrhizal symbioses. Various benefits of endophytic associations were proved, including amelioration of devastating effects of pathogens such as Fusarium culmorum. The advantage of Rh-like endophytes over strictly biotrophic mycorrhizal organisms is the possibility of their cultivation on organic substrates, which makes their use more suitable for production. We focused on abilities of five Rh-like fungi isolated from orchid mycorrhizas, endophytic fungi Serendipita indica, Microdochium bolleyi and pathogenic Ceratobasidium cereale to inhibit the growth of pathogenic F. culmorum or Pyrenophora teres in vitro. We also analysed their suppressive effect on wheat infection by F. culmorum in a growth chamber, as well as an effect on barley under field conditions. Some of the Rh-like fungi affected the growth of plant pathogens in vitro, then the interaction with plants was tested. Beneficial effect was especially noted in the pot experiments, where wheat plants were negatively influenced by F. culmorum. Inoculation with S. indica caused higher dry shoot biomass in comparison to plants treated with fungicide. Prospective for future work are the effects of these endophytes on plant signalling pathways, factors affecting the level of colonization and surviving of infectious particles.


Plant Disease ◽  
2021 ◽  
Author(s):  
Leslie Amanda Holland ◽  
Renaud Travadon ◽  
Daniel P. Lawrence ◽  
Mohamed Taieb Nouri ◽  
Florent P Trouillas

Almond trunk and branch canker diseases constitute a major cause of tree mortality in California. Numerous fungal pathogens have been associated with these canker diseases and pruning wounds act as major infection courts. Prior to this study, there were no products registered in California for the management of these diseases. In this study, fungicidal products including synthetic chemistries, biocontrols, paint and a sealant were evaluated for preventing fungal pathogen infection via pruning wounds. In four field trials conducted over two dormant seasons, sixteen pruning wound treatments were tested using hand-held spray applications, against five almond canker pathogens, namely Botryosphaeria dothidea, Neofusicoccum parvum, Cytospora sorbicola, Ceratocystis destructans, and Eutypa lata. The fungicide thiophanate-methyl (Topsin M) provided 82% overall disease prevention against four fungal pathogens. The biological control agent, Trichoderma atroviride SC1 (Vintec), tested at three application rates, resulted in 90 to 93% protection of pruning wounds in field trials, and for individual pathogens ranged from 81-100% protection for the three rates. At the time of this publication, Vintec is being considered for registration as a biological control product for the prevention of almond canker diseases, while Topsin M is recommended to growers for the prevention of almond canker diseases. This research indicates that effective protection of pruning wounds from infection by almond canker pathogens can be achieved with a one-time spray application of thiophanate-methyl or the biocontrol, T. atroviride SC1 (recommended 2 g/liter) after pruning.


Botany ◽  
2009 ◽  
Vol 87 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Nick Reid ◽  
Simon F. Shamoun

Many mistletoe species are pests in agricultural and forest ecosystems throughout the world. Mistletoes are unusual “weeds” as they are generally endemic to areas where they achieve pest status and, therefore, classical biological control and broad-scale herbicidal control are usually impractical. In North American coniferous forests, dwarf mistletoe ( Arceuthobium spp.) infection results in major commercial losses and poses a public liability in recreation settings. Hyperparasitic fungi have potential as biological control agents of dwarf mistletoe, including species which attack shoots, berries, and the endophytic systems of dwarf mistletoe. Development of an inundative biological control strategy will be useful in situations where traditional silvicultural control is impractical or undesirable. In southern Australia, farm eucalypts are often attacked and killed by mistletoes ( Amyema spp.) in grazed landscapes where tree decline and biodiversity loss are major forms of land degradation. Although long-term strategies to achieve a balance between mistletoe and host abundance are promoted, many graziers want short-term options to treat severely infected trees. Recent research has revisited the efficiency and efficacy of silvicultural treatments and selective herbicides in appropriate situations. The results of recent research on these diverse management strategies in North America and Australia are summarized.


2005 ◽  
Vol 19 (1) ◽  
pp. 19-26 ◽  
Author(s):  
CAMILLA B. YANDOC ◽  
RAGHAVAN CHARUDATTAN ◽  
DONN G. SHILLING

2012 ◽  
Vol 2 (5) ◽  
pp. 217-226
Author(s):  
E. O. Omwenga ◽  
P. O. Okemo ◽  
P. K. Mbugua

The antimicrobial effect of some selected Samburu medicinal plants was evaluated on bacterial strains like Staphylococcus aureus ‐ ATCC 20591, Bacillus subtillis ‐ Local isolate, Salmonella typhi‐ATCC 2202, Escherichia coli‐STD. 25922 and Pseudomonas aeroginosa ‐ ATCC 25852 and fungal strains like Candida albicans ATCC EK138, Aspergillus niger ATCC 16404, Aspergillusflavus‐Local isolate, Fusarium lateritium‐Local isolate, and Penicillium spp.‐ local isolate. Methanol was used as solvent for the extraction from the selected medicinal plants used by the Samburu community. The in vitro antimicrobial activity was performed by agar disc diffusion and micro‐dilution technique. The most susceptible Gram‐positive bacterium was S. aureus, while the most susceptible Gram‐negative bacterium was P. aeroginosa. The extracts of Gomphocarpus fruticosus (L) W.T. Aiton showed less activity against the bacterial strains investigated. The most active antibacterial plants were Euphorbia scarlatica S. Carter, and Euclea divinoram Hiern. Incidentally most of the extracts were inactive against the fungal strains with only a few proving to be slightly active against the C. albicans i.e. Loranthus acaciae Zucc., Kedrostis pseudogijef (Gilg) C. Jeffrey, Euclea divinoram Hiern. and Croton macrostachyus (A. Rich). Benths. The significant antimicrobial activity of active extracts was compared with the standard antimicrobials, cefrodoxima, amoxicillin and fluconazole. The MICs of the most active plants ranged from 18.75mg/ml to 37.50mg/ml. The MBCs ranged between 18.75mg/ml to75mg/ml. These results were significant at P< 0.01. The findings show that most of the medicinal plants used by the Samburu community have some significant activity on the bacterial but not fungal pathogens known to cause diarrhoea.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 486 ◽  
Author(s):  
Handi Dahmana ◽  
Didier Raoult ◽  
Florence Fenollar ◽  
Oleg Mediannikov

Mosquitoes can transmit to humans devastating and deadly pathogens. As many chemical insecticides are banned due to environmental side effects or are of reduced efficacy due to resistance, biological control, including the use of bacterial strains with insecticidal activity, is of increasing interest and importance. The urgent actual need relies on the discovery of new compounds, preferably of a biological nature. Here, we explored the phenomenon of natural larvae mortality in larval breeding sites to identify potential novel compounds that may be used in biological control. From there, we isolated 14 bacterial strains of the phylum Firmicutes, most of the order Bacillales. Cultures were carried out under controlled conditions and were separated on supernatant and pellet fractions. The two fractions and a 1:1 mixture of the two fractions were tested on L3 and early L4 Aedes albopictus. Two concentrations were tested (2 and 6 mg/L). Larvae mortality was recorded at 24, 48 and 72 h and compared to that induced by the commercialized B. thuringiensis subsp. israelensis. Of the 14 strains isolated, 11 were active against the A. albopictus larvae: 10 of the supernatant fractions and one pellet fraction, and mortality increased with the concentration. For the insecticide activity prediction in three strains of the Bacillus cereus complex, PCR screening of the crystal (Cry) and cytolytic (Cyt) protein families characteristic to B. thuringiensis subsp. israelensis was performed. Most of the genes coding for these proteins’ synthesis were not detected. We identified bacterial strains that exhibit higher insecticidal activity compared with a commercial product. Further studies are needed for the characterization of active compounds.


Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 322 ◽  
Author(s):  
Shuwu Zhang ◽  
Qi Zheng ◽  
Bingliang Xu ◽  
Jia Liu

Postharvest fungal disease is one of the significant factors that limits the storage period and marketing life of peaches, and even result in serious economic losses worldwide. Biological control using microbial antagonists has been explored as an alternative approach for the management of postharvest disease of fruits. However, there is little information available regarding to the identification the fungal pathogen species that cause the postharvest peach diseases and the potential and mechanisms of using the Bacillus subtilis JK-14 to control postharvest peach diseases. In the present study, a total of six fungal isolates were isolated from peach fruits, and the isolates of Alternaria tenuis and Botrytis cinerea exhibited the highest pathogenicity and virulence on the host of mature peaches. In the culture plates, the strain of B. subtilis JK-14 showed the significant antagonistic activity against the growth of A. tenuis and B. cinerea with the inhibitory rates of 81.32% and 83.45% at 5 days after incubation, respectively. Peach fruits treated with different formulations of B. subtilis JK-14 significantly reduced the mean disease incidences and lesion diameters of A. tenuis and B. cinerea. The greatest mean percent reduction of the disease incidences (81.99% and 71.34%) and lesion diameters (82.80% and 73.57%) of A. tenuis and B. cinerea were obtained at the concentration of 1 × 107 CFU mL−1 (colony forming unit, CFU). Treatment with the strain of B. subtilis JK-14 effectively enhanced the activity of the antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in A. tenuis and B. cinerea inoculated peach fruits. As such, the average activities of SOD, POD and CAT were increased by 36.56%, 17.63% and 20.35%, respectively, compared to the sterile water treatment. Our results indicate that the isolates of A. tenuis and B. cinerea are the main pathogens that cause the postharvest peach diseases, and the strain of B. subtilis JK-14 can be considered as an environmentally-safe biological control agent for the management of postharvest fruits diseases. We propose the possible mechanisms of the strain of B. subtilis JK-14 in controlling of postharvest peach diseases.


2001 ◽  
Vol 47 (10) ◽  
pp. 916-924 ◽  
Author(s):  
Tika B Adhikari ◽  
C M Joseph ◽  
Guoping Yang ◽  
Donald A Phillips ◽  
Louise M Nelson

Of 102 rhizoplane and endophytic bacteria isolated from rice roots and stems in California, 37% significantly (P [Formula: see text] 0.05) inhibited the growth in vitro of two pathogens, Achlya klebsiana and Pythium spinosum, causing seedling disease of rice. Four endophytic strains were highly effective against seedling disease in growth pouch assays, and these were identified as Pseudomonas fluorescens (S3), Pseudomonas tolaasii (S20), Pseudomonas veronii (S21), and Sphingomonas trueperi (S12) by sequencing of amplified 16S rRNA genes. Strains S12, S20, and S21 contained the nitrogen fixation gene, nifD, but only S12 was able to reduce acetylene in pure culture. The four strains significantly enhanced plant growth in the absence of pathogens, as evidenced by increases in plant height and dry weight of inoculated rice seedlings relative to noninoculated rice. Three bacterial strains (S3, S20, and S21) were evaluated in pot bioassays and reduced disease incidence by 50%–73%. Strain S3 was as effective at suppressing disease at the lowest inoculum density (106 CFU/mL) as at higher density (108 CFU/mL or undiluted suspension). This study indicates that selected endophytic bacterial strains have potential for control of seedling disease of rice and for plant growth promotion.Key words: biological control, plant growth promotion, endophytes, rice, seedling disease.


Sign in / Sign up

Export Citation Format

Share Document