Changes in total fatty acids and individual lipid classes on prolonged storage of wheat flour

1979 ◽  
Vol 30 (12) ◽  
pp. 1131-1138 ◽  
Author(s):  
Michael J. Warwick ◽  
William H. H. Farrington ◽  
George Shearer
HortScience ◽  
1993 ◽  
Vol 28 (12) ◽  
pp. 1191-1193 ◽  
Author(s):  
Tommy E. Thompson ◽  
Samuel D. Senter ◽  
L.J. Grauke

Pollen from five cultivars of pecans [Carya illinoinensis (Wangenh.) K. Koch] was analyzed for cytoplasmic lipid classes and constituent fatty acids. Lipid classes in all cultivars included free fatty acids, triglycerides, and the phosphatide of inositol, serine, choline, glycerol, and ethanolamine. Triglycerides were the predominant class of lipids in all cultivars analyzed. Gas chromatography and mass spectral analysis were used to identify and quantify the fatty acids, which included palmitic, stearic, oleic, linoleic, and linolenic. Quantities of individual and total fatty acids varied greatly and were influenced significantly by cultivar, year, and location, as well as by interactions of main effects The percent composition of individual fatty acids was remarkably stable, despite wide variation in quantities of fatty acids. Therefore, pollen fatty acid ratios may be a valuable measure of taxonomic relationship across Carya sp. Total fatty acids varied from 2.53% to 0.25% of dry weight. Variability in stored energy in the form of lipids may affect orchard production.


1974 ◽  
Vol 13 (4) ◽  
pp. 755-756 ◽  
Author(s):  
Paolo Ghirardi ◽  
Antonio Marzo ◽  
Giorgio Ferrari

HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 264B-264
Author(s):  
Tommy E. Thompson ◽  
Samuel D. Senter ◽  
L.J. Grauke

Pollen from five cultivars (cvs.) of pecans [Carya illinoinensis (Wangenh.) K. Koch] was sampled at Brownwood and College Station, Texas, in 1991 and 1992. Samples were analyzed for cytoplasmic lipid classes and constituent fatty acids. Lipid classes in all cvs. included phosphatidyl inasitol, phosphatidyl swine, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, free fatty acids, and triglycerides. Triglycerides were the predominant class of lipids in all cvs. analyzed. Fatty acids, qualitated and quantitated by gas chromatographic-mass spectral analysis, included palmitie (16:0), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) adds. Quantities of individual and total fatty acids were significantly influenced (P> 0.05) by tree age. Within a uniform age class, quantities of individual and total fatty acids varied greatly and were significantly influenced by cultivar, year, and location as well as by interactions of main effects. The percent composition of individual fatty acids was stable in relation to total fatty acids in the sample, despite wide variation in quantities of fatty acids in different samples. Total fatty acids varied from 2.53% to 0.25% of dry weight. How this large variability in stored energy levels among pollen sources may affect orchard production is discussed.


2020 ◽  
Vol 20 (4) ◽  
pp. 463-467
Author(s):  
Trinh Thi Thu Huong

Lipid classes and fatty acid compositions of the farmed (F-C. gigas) and wild (W-C. gigas) pacific oysters, Crassostrea gigas, in Nha Trang, Vietnam were investigated for the first time. The results indicated that the lipid classes and fatty acid components of these oysters were insignificantly different. The total lipid of both studied oysters included six lipid classes, namely phospholipid (PL), sterol (ST), free fatty acid (FFA), triacylglycerol (TG), monoalkyldiacylglycerol (MADG), and hydrocarbon-wax (HW) in which TG and PL were dominated with the values of 48.4%, 41.8% for TG and 19.0%, 20.3% for PL in F-C. gigas and W-C. gigas, respectively. The fatty acids (FAs) content of F-C. gigas and W-C. gigas was similar. The saturated fatty acids (SFAs) content was 48.2% in total fatty acids (TFAs) of the F-C. gigas and 44.7% in TFAs of W-C. gigas, in which 16:0 was dominated in SFAs of both oysters with the value of 24.2% in F-C. gigas and 22.0% in W-C. gigas. The contents of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were 18.3%, 20.5% for MUFAs and 31.7%, 34.7% for PUFAs respectively in F-C. gigas and W-C. gigas. These MUFAs compositions contained 16:1n-7, 16:1n-5, 18:1n-9, 18:1n-7, 20:1n-11, 20:1n-9 and 20:1n-7, among them fatty acids 16:1n-7 (7.2% in F-C. gigas, 6.3% in W-C. gigas) and 18:1n-7 (6.6% in F-C. gigas, 7.4% in W-C. gigas) were the main MUFAs. PUFAs in these two oysters consisted of long-chain n-3 and n-6 fatty acids, in which 20:5n-3 (EPA) and 22:6n-3 (DHA) were dominated with the values of 12.7%, 13.9% for EPA in F-C. gigas and 6.5%, 6.0% for DHA in W-C. gigas.


1967 ◽  
Vol 45 (11) ◽  
pp. 1725-1737 ◽  
Author(s):  
Darius J. Nazir ◽  
Aurora P. Alcaraz ◽  
Padmanabhan P. Nair

The fatty acid composition of various lipid classes obtained from subcellular fractions of bovine heart muscle by column chromatography on silicic acid has been examined by gas-liquid chromatography on diethyleneglycol succinate and Apiezon L columns. The nuclear and cytoplasmic fractions together constituted the major lipid compartments of the myocardial cell, the cytoplasmic subcellular organelles accounting for only about 4% of the total lipid. Among the total fatty acids of each subcellular fraction, there was a remarkable constancy in the relative amounts of monoethenoid fatty acids (about 23%). More than 90% of the total fatty acids had chain lengths between C18 and C20. Approximately 3–4% of longer chain length fatty acids were present in the mitochondrial and cytoplasmic fractions. There was a predominance of monoenes (36%) and long chain fatty acids (> C20) in the cholesteryl esters associated with the "microsomal" preparation. Although the monoethenoid fatty acids of triglycerides were subject to considerable variation, the nuclear and cytoplasmic compartments consistently showed about 40% of this class of fatty acid. In sharp contrast to all other neutral lipid classes, polyethenoid fatty acids constituted a significant proportion of the total free fatty acids in all subcellular organelles. The heavy mitochondrial and cytoplasmic fractions showed relatively higher concentrations of polyethenoid free fatty acids. In view of the fact that free fatty acids constituted the main source of energy from fats for the myocardium, the hypothesis has been advanced that heart muscle mitochondria preferentially extract the readily oxidizable free polyunsaturated fatty acids from the cytoplasmic environment to fulfill the energy demands of the aerobic cell.


Author(s):  
Ikumi Umetani ◽  
Eshetu Janka ◽  
Michal Sposób ◽  
Chris J. Hulatt ◽  
Synne Kleiven ◽  
...  

AbstractBicarbonate was evaluated as an alternative carbon source for a green microalga, Tetradesmus wisconsinensis, isolated from Lake Norsjø in Norway. Photosynthesis, growth, and lipid production were studied using four inorganic carbon regimes: (1) aeration only, (2) 20 mM NaHCO3, (3) 5% (v/v) CO2 gas, and (4) combination of 20 mM NaHCO3 and 5% CO2. Variable chlorophyll a fluorescence analysis revealed that the bicarbonate treatment supported effective photosynthesis, while the CO2 treatment led to inefficient photosynthetic activity with a PSII maximum quantum yield as low as 0.31. Conversely, bicarbonate and CO2 treatments gave similar biomass and fatty acid production. The maximum growth rate, the final cell dry weight, and total fatty acids under the bicarbonate-only treatment were 0.33 (± 0.06) day−1, 673 (± 124) mg L−1 and 75 (± 5) mg g−1 dry biomass, respectively. The most abundant fatty acid components were α-linolenic acid and polyunsaturated fatty acids constituting 69% of the total fatty acids. The fatty acid profile eventuated in unsuitable biodiesel fuel properties such as high degree of unsaturation and low cetane number; however, it would be relevant for food and feed applications. We concluded that bicarbonate could give healthy growth and comparative product yields as CO2.


2009 ◽  
Vol 4 (10) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Christel Brunschwig ◽  
François Xavier Collard ◽  
Jean-Pierre Bianchini ◽  
Phila Raharivelomanana

In order to establish a chemical fingerprint of vanilla diversity, thirty samples of V. planifolia J. W. Moore and V. tahitensis G. Jackson cured beans from seven producing countries were examined for their aroma and fatty acid contents. Both fatty acid and aroma compositions were found to vary between vanilla species and origins. Vanillin was found in higher amounts in V. planifolia (1.7-3.6% of dry matter) than in V. tahitensis (1.0-2.0%), and anisyl compounds were found in lower amounts in V. planifolia (0.05%) than in V. tahitensis (1.4%-2.1%). Ten common and long chain monounsaturated fatty acids (LCFA) were identified and were found to be characteristic of the vanilla origin. LCFA derived from secondary metabolites have discriminating compositions as they reach 5.9% and 15.8% of total fatty acids, respectively in V. tahitensis and V. planifolia. This study highlights the role of the curing method as vanilla cured beans of two different species cultivated in the same country were found to have quite similar fatty acid compositions.


Sign in / Sign up

Export Citation Format

Share Document