scholarly journals Persistence of bioconvection‐induced mixed layers in a stratified lake

2021 ◽  
Vol 66 (4) ◽  
pp. 1531-1547 ◽  
Author(s):  
Oscar Sepúlveda Steiner ◽  
Damien Bouffard ◽  
Alfred Wüest
Keyword(s):  
Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 523
Author(s):  
Gabriel Ricardo Cifuentes ◽  
Juan Jiménez-Millán ◽  
Claudia Patricia Quevedo ◽  
Fernando Nieto ◽  
Javier Cuadros ◽  
...  

In this investigation, we showed that high salinity promoted by hydrothermal inputs, reducing conditions of sediments with high content in organic matter, and the occurrence of an appropriate clay mineral precursor provide a suitable framework for low-temperature illitization processes. We studied the sedimentary illitization process that occurs in carbonaceous sediments from a lake with saline waters (Sochagota Lake, Colombia) located at a tropical latitude. Water isotopic composition suggests that high salinity was produced by hydrothermal contribution. Materials accumulated in the Sochagota Lake’s southern entrance are organic matter-poor sediments that contain detrital kaolinite and quartz. On the other hand, materials formed at the central segment and near the lake exit (north portion) are enriched in organic matter and characterized by the crystallization of Fe-sulfides. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectrometry (EDX) data allowed for the identification of illite and illite-dioctahedral vermiculite mixed layers (I-DV), which are absent in the southern sediments. High humidity and temperate climate caused the formation of small-sized metastable intermediates of I-DV particles by the weathering of the source rocks in the Sochagota Lake Basin. These particles were deposited in the low-energy lake environments (middle and north part). The interaction of these sediments enriched in organic matter with the saline waters of the lake enriched in hydrothermal K caused a reducing environment that favored Fe mobilization processes and its incorporation to I-DV mixed layers that acted as mineral precursor for fast low temperature illitization, revealing that in geothermal areas clays in lakes favor a hydrothermal K uptake.


2004 ◽  
Vol 41 (4) ◽  
pp. 401-429 ◽  
Author(s):  
Iftikhar A Abid ◽  
Reinhard Hesse ◽  
John D Harper

Mixed-layer illite/smectite (I/S) clays were analyzed from 22 deep exploration wells from the Jeanne d'Arc Basin on the Grand Banks offshore Newfoundland, the host of large commercial hydrocarbon accumulations discovered in the last two and a half decades. The fine fraction of the clays (<0.1 µm) consists mainly of mixed-layer I/S with minor amounts of kaolinite, illite, and chlorite. Smectite and (or) smectite-rich I/S clays were supplied to the Jeanne d'Arc Basin from Upper Jurassic to Tertiary times. Smectite-rich I/S clays occur only in shallow samples irrespective of geologic age. The proportion of illite in I/S mixed-layers, as well as the degree of ordering, increase with depth and temperature indicating that smectite-rich I/S clays have been progressively illitized in both rift and post-rift sediments of the Jeanne d'Arc Basin during burial. The transition from random to R1-ordered I/S occurs between subsurface depths of 1940 and 3720 m and crosses major stratigraphic boundaries. The transition from R1- to R3-ordered I/S generally occurs below 4000 m depth. Variable shapes of I/S depth profiles reflect the influence of temperature, fluid migration, subsidence history, basin structure, lithology, and salt diapirism on I/S diagenesis. Based on these variations, the basin can be subdivided into 4 regions with different illitization gradients. In the Southern Jeanne d'Ac Basin, advanced I/S diagenesis probably reflects uplift and denudation and (or) higher paleogeothermal gradients. Rapid increase of percent illite in I/S with depth in the Trans-Basinal Fault area is most likely controlled by upward flow of hot, K+-bearing fluids along faults. The migration of hydrocarbons probably followed the same pathways as the illitizing fluids. Delayed illitization in the Northern Jeanne d'Arc Basin and Central Ridge area reflects insufficient K+ supply because of a lack of detrital K-feldspar in the host sediment, the absence of faulting, and the presence of thick shale intervals. These findings show that I/S depth profiles may vary within the same sedimentary basin due to a variety of geological factors. Single wells generally cannot be considered representative for the basin as a whole.


2008 ◽  
Vol 38 (6) ◽  
pp. 1145-1165 ◽  
Author(s):  
Baylor Fox-Kemper ◽  
Raffaele Ferrari ◽  
Robert Hallberg

Abstract Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and the climate impacts of this parameterization.


1995 ◽  
Vol 116 (2) ◽  
pp. 347-354 ◽  
Author(s):  
A. Maignan ◽  
C. Martin ◽  
C. Michel ◽  
M. Hervieu ◽  
B. Raveau
Keyword(s):  

2013 ◽  
Vol 18 (4) ◽  
pp. 302-310 ◽  
Author(s):  
Abhijit Dan ◽  
Georgi Gochev ◽  
Jürgen Krägel ◽  
Eugene V. Aksenenko ◽  
Valentin B. Fainerman ◽  
...  

Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 63-73 ◽  
Author(s):  
M. Araujo ◽  
C. Limongi ◽  
J. Servain ◽  
M. Silva ◽  
F. S. Leite ◽  
...  

Abstract. High-resolution hydrographic observations of temperature and salinity are used to analyze the formation and distribution of isothermal depth (ZT), mixed depth (ZM) and barrier layer thickness (BLT) in a section of the southwestern Atlantic (0°30´ N–14°00´ S; 31°24´–41°48´ W), adjacent to the northeastern Brazilian coast. Analyzed data consists of 279 CTD casts acquired during two cruises under the Brazilian REVIZEE Program. One occurred in late austral winter (August–October 1995) and another in austral summer (January–April 1997). Oceanic observations are compared to numerical modeling results obtained from the French Mercator-Coriolis Program. Results indicate that the intrusion of subtropical Salinity Maximum Waters (SMW) is the major process contributing to the seasonal barrier layer formation. These waters are brought by the South Equatorial Current (SEC), from the subtropical region, into the western tropical Atlantic boundary. During late austral winter southeastern trade winds are more intense and ITCZ precipitations induce lower surface salinity values near the equator. During this period a 5–90 m thick BLT (median = 15 m) is observed and BLT > 30 m is restricted to latitudes higher than 8° S, where the intrusion of salty waters between 8°–12.3° S creates shallow mixed layers over deep (ZT ≥ 90 m) isothermal layers. During austral summer, shallow isothermal and mixed layers prevail, when northeasterly winds are predominant and evaporation overcomes precipitation, causing saltier waters at the surface/subsurface layers. During that period observed BLT varies from 5 to 70 m and presents thicker median value of 35 m, when comparing to the winter. Furthermore, BLT ≥ 30 m is observed not only in the southernmost part of the study area, as verified during late winter, but in the latitude range 2°–14° S, where near-surface salty waters are transported westward by the SEC flow. These results indicate that the inclusion of salinity dynamics and its variability are necessary for studying mixed and barrier layer behaviors in the tropical Atlantic, where ocean-atmosphere coupling is known to be stronger.


2013 ◽  
Vol 4 ◽  
pp. 649-654 ◽  
Author(s):  
Maria A Komkova ◽  
Angelika Holzinger ◽  
Andreas Hartmann ◽  
Alexei R Khokhlov ◽  
Christine Kranz ◽  
...  

We report here a way for improving the stability of ultramicroelectrodes (UME) based on hexacyanoferrate-modified metals for the detection of hydrogen peroxide. The most stable sensors were obtained by electrochemical deposition of six layers of hexacyanoferrates (HCF), more specifically, an alternating pattern of three layers of Prussian Blue and three layers of Ni–HCF. The microelectrodes modified with mixed layers were continuously monitored in 1 mM hydrogen peroxide and proved to be stable for more than 5 h under these conditions. The mixed layer microelectrodes exhibited a stability which is five times as high as the stability of conventional Prussian Blue-modified UMEs. The sensitivity of the mixed layer sensor was 0.32 A·M−1·cm−2, and the detection limit was 10 µM. The mixed layer-based UMEs were used as sensors in scanning electrochemical microscopy (SECM) experiments for imaging of hydrogen peroxide evolution.


2013 ◽  
Vol 730 ◽  
pp. 464-490 ◽  
Author(s):  
James C. McWilliams ◽  
Baylor Fox-Kemper

AbstractA geostrophic, hydrostatic, frontal or filamentary flow adjusts conservatively to accommodate a surface gravity wave field with wave-averaged, Stokes-drift vortex and Coriolis forces in an altered balanced state. In this altered state, the wave-balanced perturbations have an opposite cross-front symmetry to the original geostrophic state; e.g. the along-front flow perturbation is odd-symmetric about the frontal centre while the geostrophic flow is even-symmetric. The adjustment tends to make the flow scale closer to the deformation radius, and it induces a cross-front shape displacement in the opposite direction to the overturning effects of wave-aligned down-front and up-front winds. The ageostrophic, non-hydrostatic, adjusted flow may differ from the initial flow substantially, with velocity and buoyancy perturbations that extend over a larger and deeper region than the initial front and Stokes drift. The largest effect occurs for fronts that are wider than the mixed layer deformation radius and that fill about two-thirds of a well-mixed surface layer, with the Stokes drift spanning only the shallowest part of the mixed layer. For even deeper mixed layers, and especially for thinner or absent mixed layers, the wave-balanced adjustments are not as large.


Sign in / Sign up

Export Citation Format

Share Document