scholarly journals Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

2021 ◽  
Author(s):  
Daphne Donis ◽  
Evanthia Mantzouki ◽  
Daniel F. McGinnis ◽  
Dominic Vachon ◽  
Irene Gallego ◽  
...  
2006 ◽  
Vol 63 (5) ◽  
pp. 1115-1129 ◽  
Author(s):  
David C Depew ◽  
Stephanie J Guildford ◽  
Ralph E.H Smith

Planktonic primary production, chlorophyll a (chl a), underwater light climate, and total phosphorus were measured at 18 stations during 2001 and 2002 in eastern Lake Erie to characterize spatial and seasonal patterns in this system colonized by dreissenid mussels (Dreissena spp.). Areal production rates and chl a displayed a seasonal pattern typical of the Laurentian Great Lakes, with highest production in the early and late summer. Daily and seasonal (May–October) primary production was significantly lower nearshore than offshore. Although light attenuation was similar between nearshore and offshore, the nearshore light climate was generally more favorable for phytoplankton because of shallower mixing depths. However, chl a was significantly lower nearshore, which accounted for most of the depression in production rates. Nearshore chl a was lower than predicted from relationships with total phosphorus in comparable dreissenid-free systems. Offshore, subepilimnetic communities contributed up to 67% of daily production but only up to 19% of seasonal production. The depression of chl a and primary production in the nearshore was a reversal from historic patterns in eastern Lake Erie and from the pattern traditionally expected in large lakes. Decreased external nutrient loading and dreissenid colonization may both have contributed to this new spatial pattern, but dreissenids appear to be key agents.


Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

Author(s):  
Alexander S. Lelekov ◽  
Rudolf P. Trenkenshu

The paper presents an example of the linear splines use to describe the photosynthesis light curves for microalgae culture. The main mathematical models of the relationship between photosynthesis rate and light are listed. Based on the previously formulated basic principles of modeling microalgae photobiosynthesis, a mathematical model is proposed that describes the dependence of the assimilation number of chlorophyll a on the value of the light flux by linear splines. The advantage of the proposed approach is a clear definition of the point of change of the limiting factor. It is shown that light-limited photosynthesis rate is determined not only by external irradiation, but also by the concentration of chlorophyll a. The light-saturated rate depends on the amount of a key enzyme complex, which limits the rate of energy exchange reactions in the cell. Verification of the proposed model on the example of the diatom microalgae Skeletonema costatum was carried out. It is shown that the higher the degree of cell adaptation to high irradiation, the better the photosynthesis curve is described by linear splines. If S. costatum cells are adapted to low irradiation, deviations of experimental data from the idealized broken line are observed, which are caused by changes in the pigment composition. When the experimental data are normalized, the cell adaptation factor is reduced, all points are described by a single broken line, which indicates the universality of the proposed approach.


Author(s):  
Leonid E. Paramonov

A method for retrieving the absorption coefficients of Spirulina platensis pigments using absorption spectra of native cells and excluding the use of extracts is considered. Estimates of the intracellular concentration of chlorophyll a, С-phycoerythrin, С- phycocyanin and allophycocyanin in native cells are discussed.


Sign in / Sign up

Export Citation Format

Share Document