Thermoplastic Polyurethanes From Undecylenic Acid-Based Soft Segments: Structural Features and Release Properties

2013 ◽  
Vol 13 (5) ◽  
pp. 614-622 ◽  
Author(s):  
Cristina Lluch ◽  
Gerard Lligadas ◽  
Joan C. Ronda ◽  
Marina Galià ◽  
Virginia Cádiz
Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3097
Author(s):  
Mónica Fuensanta ◽  
José Miguel Martín-Martínez

Thermoplastic polyurethanes (TPUs) were synthetized with blends of poly(propylene glycol) (PPG) and poly(1,4-butylene adipate) (PAd) polyols, diphenylmethane-4,4′-diisocyanate (MDI) and 1,4-butanediol (BD) chain extender; different NCO/OH ratios were used. The structure and viscoelastic properties of the TPUs were assessed by infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis and plate-plate rheology, and their pressure sensitive adhesion properties were assessed by probe tack and 180° peel tests. The incompatibility of the PPG and PAd soft segments and the segregation of the hard and soft segments determined the phase separation and the viscoelastic properties of the TPUs. On the other hand, the increase of the NCO/OH ratio improved the miscibility of the PPG and PAd soft segments and decreased the extent of phase separation. The temperatures of the cool crystallization and melting were lower and their enthalpies were higher in the TPU made with NCO/OH ratio of 1.20. The moduli of the TPUs increased by increasing the NCO/OH ratio, and the tack was higher by decreasing the NCO/OH ratio. In general, a good agreement between the predicted and experimental tack and 180° peel strength values was obtained, and the TPUs synthesized with PPG+PAd soft segments had potential application as pressure sensitive adhesives (PSAs).


2021 ◽  
pp. 50815
Author(s):  
Tuan Noor Maznee Tuan Ismail ◽  
Nor Azowa Ibrahim ◽  
Kosheela Devi Poo Palam ◽  
Aisa Sendijarevic ◽  
Ibrahim Sendijarevic ◽  
...  

Polymer ◽  
2008 ◽  
Vol 49 (19) ◽  
pp. 4248-4258 ◽  
Author(s):  
Yijin Xu ◽  
Zoran Petrovic ◽  
Sudipto Das ◽  
Garth L. Wilkes

2014 ◽  
Vol 79 (7) ◽  
pp. 843-866 ◽  
Author(s):  
Marija Pergal ◽  
Ivan Stefanovic ◽  
Dejan Godjevac ◽  
Vesna Antic ◽  
Vesna Milacic ◽  
...  

In this study, the synthesis, structure and physical properties of two series of thermoplastic polyurethanes based on hydroxypropyl terminated poly(dimethylsiloxane) (HP-PDMS) or hydroxyethoxy propyl terminated poly(dimethylsiloxane) (EO-PDMS) as a soft segment, and 4,4?-methylenediphenyl diisocyanate and 1,4-butanediol as a hard segment were investigated. Each series is composed of samples prepared with a different soft segment. The polyurethanes were synthesized by two-step polyaddition in solution. The effects of the type and content of PDMS segments on the structure, thermal and surface properties of copolymers were studied by 1H NMR, 13C NMR and two-dimensional NMR (HMBC and ROESY) spectroscopy, GPC, DSC, TGA, WAXS, SEM, water contact angle and water absorption measurements. Thermal properties investigated by DSC indicated that the presence of soft PDMS segments lowers the glass transition and melting temperatures of the hard phase as well as the degree of crystallinity. SEM analysis of copolymers with a lower soft segment content confirmed the presence of spherulite superstructures, which arise from the crystallization of the hard segments. When compared with polyurethanes prepared from HP-PDMS, copolymers synthesized from EO-PDMS with the same content of the soft segments have higher degree of crystallinity, better thermal stability and less hydrophobic surface. Our results show that the synthesized polyurethanes have good thermal and surface properties, which could be further modified by changing the type or content of the soft segments.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document