scholarly journals The differential effects of heat‐shocking on the viability of spores from Bacillus anthracis , Bacillus subtilis , and Clostridium sporogenes after treatment with peracetic acid‐ and glutaraldehyde‐based disinfectants

2015 ◽  
Vol 4 (5) ◽  
pp. 764-773 ◽  
Author(s):  
Jordon K. March ◽  
Michael D. Pratt ◽  
Chinn‐Woan Lowe ◽  
Marissa N. Cohen ◽  
Benjamin A. Satterfield ◽  
...  
1984 ◽  
Vol 25 (2) ◽  
pp. 99-105_1 ◽  
Author(s):  
Michio HAMAMOTO ◽  
Shigetoshi YAMAGUCHI ◽  
Yoshiteru ASAI ◽  
Kousou SHIMODA

2005 ◽  
Vol 7 (5) ◽  
pp. 475 ◽  
Author(s):  
Nancy Clark Burton ◽  
Atin Adhikari ◽  
Sergey A. Grinshpun ◽  
Richard Hornung ◽  
Tiina Reponen

2021 ◽  
Author(s):  
Wenxia Wang ◽  
Xiaoting Liang ◽  
Junxia Zheng ◽  
Qi He

Abstract In this work, we systematically investigate the sterilization effect of six kinds of commonly used commercial disinfectants, including the DuPont Virkon disinfectant, peracetic acid disinfectant, sodium hypochlorite, bromogeramine disinfectant, water-soluble allicin, and absolute ethanol, against the Escherichia coli, Staphylococcus aureus, Monilia albican and Clostridium sporogenes. The inhibition zone was used to qualitatively determine the antibacterial effects of the six disinfectants, and then the minimum two-fold dilution method was used to quantitatively determine the minimum inhibitory concentration and minimum bactericidal concentration of the six disinfectants on the four pathogens. The result illustrated that the antibacterial effect of peracetic acid disinfectant is the best, and clostridium sporogenes is the most sensitive to it, followed by bromogermine disinfectant, which can inhibit the four pathogenic bacteria at the concentration recommended by the manufacturer. The antibacterial effect of DuPont Virkon disinfectant, sodium hypochlorite, water-soluble allicin and absolute ethanol is not as good as expected, and cannot inhibit the four kinds of pathogenic bacteria at the recommended concentration. In summary, the antibacterial effect of peracetic acid disinfectant is the strongest, followed by the bromogermine disinfectant, DuPont Virkon disinfectant, sodium hypochlorite and water-soluble allicin. The absolute ethanol exhibits the worst antibacterial properties.


2006 ◽  
Vol 17 (2) ◽  
pp. 117-121 ◽  
Author(s):  
Ana Lúcia Campani Chassot ◽  
Maria Inês Pereira Poisl ◽  
Susana Maria Werner Samuel

The purpose of this study was to assess the antimicrobial efficacy of a peracetic acid-based disinfectant for decontamination of heat-polymerized, chemically activated and microwave-polymerized acrylic resins. Resin plates were contaminated in vivo upon intraoral use by 10 volunteers for 7 nights and slabs were contaminated in vitro by contact with Bacillus subtilis and Bacillus stearothermophilus. The contaminated acrylic resin specimens were immersed in a 0.2% peracetic acid-based disinfectant (Sterilife®; Lifemed) for 5 min or 10 min and placed in a BHI culture medium. After incubation at 37°C for 48 h, bacterial growth was assessed by analyzing turbidity of the medium. For all types of acrylic resin, no turbidity of the medium was observed for any of the resin specimens immersed in the peracetic acid-based disinfectant for either 5 or 10 min. On the other hand, the media with specimens that were not immersed in the disinfectant (control) showed turbidity in 100% of the cases, indicating the presence of microorganisms in both tested conditions. In conclusion, immersion for at least 5 min in a 0.2% peracetic acid-based disinfectant promoted high-level disinfection of heat-polymerized, chemically activated and microwave-polymerized acrylic resins contaminated with either human saliva or Bacillus subtilis or Bacillus stearothermophilus.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138083 ◽  
Author(s):  
Joseph P. Wood ◽  
Kathryn M. Meyer ◽  
Thomas J. Kelly ◽  
Young W. Choi ◽  
James V. Rogers ◽  
...  

2003 ◽  
Vol 185 (4) ◽  
pp. 1443-1454 ◽  
Author(s):  
Erh-Min Lai ◽  
Nikhil D. Phadke ◽  
Maureen T. Kachman ◽  
Rebecca Giorno ◽  
Santiago Vazquez ◽  
...  

ABSTRACT The outermost proteinaceous layer of bacterial spores, called the coat, is critical for spore survival, germination, and, for pathogenic spores, disease. To identify novel spore coat proteins, we have carried out a preliminary proteomic analysis of Bacillus subtilis and Bacillus anthracis spores, using a combination of standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation and improved two-dimensional electrophoretic separations, followed by matrix-assisted laser desorption ionization-time of flight and/or dual mass spectrometry. We identified 38 B. subtilis spore proteins, 12 of which are known coat proteins. We propose that, of the novel proteins, YtaA, YvdP, and YnzH are bona fide coat proteins, and we have renamed them CotI, CotQ, and CotU, respectively. In addition, we initiated a study of coat proteins in B. anthracis and identified 11 spore proteins, 6 of which are candidate coat or exosporium proteins. We also queried the unfinished B. anthracis genome for potential coat proteins. Our analysis suggests that the B. subtilis and B. anthracis coats have roughly similar numbers of proteins and that a core group of coat protein species is shared between these organisms, including the major morphogenetic proteins. Nonetheless, a significant number of coat proteins are probably unique to each species. These results should accelerate efforts to develop B. anthracis detection methods and understand the ecological role of the coat.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Michelle M. Nerandzic ◽  
Thriveen Sankar C ◽  
Peter Setlow ◽  
Curtis J. Donskey

Abstract Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5–2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200–2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.


Sign in / Sign up

Export Citation Format

Share Document