High-performance wide stop band low-pass filter using a vertically coupled DGS-DMS-resonators and interdigital capacitor

2013 ◽  
Vol 56 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Ahmed Boutejdar ◽  
Abbas Omar ◽  
Edmund Burte
Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 403 ◽  
Author(s):  
Jin Zhang ◽  
Ruosong Yang ◽  
Chen Zhang

A microstrip low-pass filter (LPF) using reformative stepped impedance resonator (SIR) and defected ground structure (DGS) is proposed in this paper. The proposed filter not only possesses the advantage of high frequency selectivity of SIR hairpin LPF with internal coupling, but also possesses the large stop-band (SB) bandwidth by adjusting the number and area of DGS units. The LPF proposed in this paper possesses the properties of miniaturization, wide SB, high selectivity, and low pass-band ripple (PBR) simultaneously. The characteristic parameters of the proposed LPF is that: the pass-band (PB) is 0~2 GHz, the PBR is 0.5 dB, the SB range is from 2.4 GHz to 9 GHz when the attenuation is under 20 dB, and the maximal attenuation could reach 45 dB in the SB. The size of this proposed LPF is 0.13 λ × 0.09 λ ; λ is the corresponding wavelength of the upper PB edge frequency of 2 GHz.


2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2013 ◽  
Vol 562-565 ◽  
pp. 1132-1136
Author(s):  
Xiao Wei Liu ◽  
Jian Yang ◽  
Song Chen ◽  
Liang Liu ◽  
Rui Zhang ◽  
...  

In this paper, we design a high-order switched capacitor filter for rapid change parameter converter. This design uses a structure which consists of three biquads filter sub-units. The design is a 6th-order SC elliptic low-pass filter, and the sample frequency is 250 kHz. By the MATLAB Simulink simulation, the system can meet the design requirements in the time domain. In this paper, the 6th-order switched capacitor elliptic low-pass filter was implemented under 0.5 um CMOS process and simulated in Cadence. The final simulation results show that the pass-band cutoff frequency is 10 kHz, and the maximum pass-band ripple is about 0.106 dB. The stop-band cutoff frequency is 20 kHz, and the minimum stop-band attenuation is 74.78 dB.


2017 ◽  
Vol 99 (1) ◽  
pp. 497-507 ◽  
Author(s):  
Saeed Roshani ◽  
Alireza Golestanifar ◽  
Amirhossein Ghaderi ◽  
Hesam Siahkamari ◽  
Derek Abbott

2014 ◽  
Vol 609-610 ◽  
pp. 1072-1076
Author(s):  
Qiu Ye Lv ◽  
Chong He ◽  
Wen Jie Fan ◽  
Yu Feng Zhang ◽  
Xiao Wei Liu

In this Paper, a 4th-Order Low-Pass Gm-C Filter is Presented. for the Design of Operational Tranconductance Amplifier(OTA), it Adopts the Techniques of Current Division and Current Cancellation. these Techniques can Help to Achieve a Low Transconductance Value. for the Architecture of the 4th-Order Gm-C Filter, it Consists of Two Biquads. the Two Biquads are Cascade Connected. the Gm-C Low-Pass Filter has been Implemented under 0.5 μm CMOS Process Model. the Final Simulation Results Show the Cutoff Frequency of the Filter is 100Hz and the Stop-Band Attenuation is Larger than 60dB. the Power Consumption is Lower than 1mW and the Total Harmonic Distortion(THD) is -55dB.


2017 ◽  
Vol 744 ◽  
pp. 428-432
Author(s):  
Zhi Wei Zeng ◽  
Ming Zhe Hu ◽  
Jing Li Long ◽  
Deng Hui Ji ◽  
Yue Yin

A low pass filter based on spoof surface plasma polaritons (SSPPs) was devised successfully, which possessed three-section structure, the microstrip wave guide as the first section, the conversion section as the second section, and the SSPPs as the third section. It should be noted that there is a new V-shaped groove structure in the third section, which were carried out by the simulation on characteristics of stop band rejection characteristic and bandwidth for low pass filter. These results indicated that the low pass filter had Pass-band between direct-current and 7.8592GHz, the pass-band insertion loss was better than -3dB, the pass-band reflection was less than -10dB. This new type of SSPPs low pass filter would be certain engineering value in the application of microstrip circuit, microwave base station and radar microwave communication system between L band and X band.


2021 ◽  
Author(s):  
Hima Bindu Katikala ◽  
G.Ramana Murthy ◽  
Yatavakilla Amarendra Nath

Abstract The important challenge for the realization of hearing aids is small size, low cost, low power consumption and better performance, etc. Keeping these requirements in view this work concentrates on the VLSI (Very Large Scale Integrated) implementation of analog circuit that mimic the PPSK (Passive Phase Shift Keying) demodulator with low pass filter. This research deals with RF Cochlear implant circuits and their data transmission. A PPSK modulator is used for uplink data transmission in biomedical implants with simultaneous power, data transmission This paper deals about the implementation of PPSK demodulator with related circuits and low pass filter which are used in cochlear implants consumes low power and operates at 14MHz frequency. These circuits are designed using FINFET 20nm technology with 0.4v DC supply voltage. The performance of proposed design over the previous design is operating at low threshold voltage, reduces static leakage currents and often observed greater than 30 times of improvement in speed performance


Sign in / Sign up

Export Citation Format

Share Document