Targeted suppression of E-cadherin gene expression in bovine preimplantation embryo by RNA interference technology using double-stranded RNA

2006 ◽  
Vol 73 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Korakot Nganvongpanit ◽  
Heike Müller ◽  
Franca Rings ◽  
Markus Gilles ◽  
Danyel Jennen ◽  
...  
Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4044-4055 ◽  
Author(s):  
S. Higgins ◽  
S. H. X. Wong ◽  
M. Richner ◽  
C. L. Rowe ◽  
D. F. Newgreen ◽  
...  

Abstract We have recently demonstrated that fibroblast growth factor (FGF)-2 promotes neuroblastoma cell differentiation and overrides their mitogenic response to IGF-I. However, the mechanisms involved are unknown. SK-N-MC cells were cultured with FGF-2 (50 ng/ml) and/or IGF-I (100 ng/ml) up to 48 h. Fluorescence-activated cell sorting analysis indicated that FGF-2 promotes G1/G0 cell cycle phase arrest. Gene expression by RT2-PCR and cellular localization showed up-regulation of p21. We then investigated whether FGF-2-induced differentiation of SK-N-MC cells (by GAP43 and NeuroD-6 expression) involves epithelium-mesenchyme transition interconversion. Real-time PCR (RT2-PCR) showed modulation of genes involved in maintenance of the epithelial phenotype and cell-matrix interactions (E-cadherin, Snail-1, MMPs). Zymography confirmed FGF-2 up-regulated MMP2 and induced MMP9, known to contribute to neuronal differentiation and neurite extension. Id1-3 expression was determined by RT2-PCR. FGF-2 induced Id2, while down-regulating Id1 and Id3. FGF-2 induced nuclear accumulation of ID2 protein, while ID1 and ID3 remained cytoplasmic. RNA interference demonstrated that Id3 regulates differentiation and cell cycle (increased Neuro-D6 and p21 mRNA), while d Id2 modulates epithelium-mesenchyme transition-like events (increased E-cadherin mRNA). In conclusion, we have shown for the first time that FGF-2 induces differentiation of neuroblastoma cells via activation of a complex gene expression program enabling modulation of cell cycle, transcription factors, and suppression of the cancer phenotype. The use of RNA interference indicated that Id-3 is a key regulator of these events, thus pointing to a novel therapeutic target for this devastating childhood cancer.


Genetics ◽  
1999 ◽  
Vol 153 (3) ◽  
pp. 1245-1256
Author(s):  
Julia M Bosher ◽  
Pascale Dufourcq ◽  
Satis Sookhareea ◽  
Michel Labouesse

Abstract In nematodes, flies, trypanosomes, and planarians, introduction of double-stranded RNA results in sequence-specific inactivation of gene function, a process termed RNA interference (RNAi). We demonstrate that RNAi against the Caenorhabditis elegans gene lir-1, which is part of the lir-1/lin-26 operon, induced phenotypes very different from a newly isolated lir-1 null mutation. Specifically, lir-1(RNAi) induced embryonic lethality reminiscent of moderately strong lin-26 alleles, whereas the lir-1 null mutant was viable. We show that the lir-1(RNAi) phenotypes resulted from a severe loss of lin-26 gene expression. In addition, we found that RNAi directed against lir-1 or lin-26 introns induced similar phenotypes, so we conclude that lir-1(RNAi) targets the lir-1/lin-26 pre-mRNA. This provides direct evidence that RNA interference can prevent gene expression by targeting nuclear transcripts. Our results highlight that caution may be necessary when interpreting RNA interference without the benefit of mutant alleles.


Science ◽  
2020 ◽  
Vol 367 (6477) ◽  
pp. 573-576 ◽  
Author(s):  
Sean P. Leonard ◽  
J. Elijah Powell ◽  
Jiri Perutka ◽  
Peng Geng ◽  
Luke C. Heckmann ◽  
...  

Honey bees are essential pollinators threatened by colony losses linked to the spread of parasites and pathogens. Here, we report a new approach for manipulating bee gene expression and protecting bee health. We engineered a symbiotic bee gut bacterium, Snodgrassella alvi, to induce eukaryotic RNA interference (RNAi) immune responses. We show that engineered S. alvi can stably recolonize bees and produce double-stranded RNA to activate RNAi and repress host gene expression, thereby altering bee physiology, behavior, and growth. We used this approach to improve bee survival after a viral challenge, and we show that engineered S. alvi can kill parasitic Varroa mites by triggering the mite RNAi response. This symbiont-mediated RNAi approach is a tool for studying bee functional genomics and potentially for safeguarding bee health.


2003 ◽  
Vol 20 (3) ◽  
pp. 99-105
Author(s):  
Misa Hosoe ◽  
Tadashi Furusawa ◽  
Fukashi Inoue ◽  
Miki Sakatani ◽  
Tomoyuki Tokunaga ◽  
...  

2005 ◽  
Vol 390 (3) ◽  
Author(s):  
Junlong Zhang

RNAi (RNA interference) refers to the suppression of expression of a target gene (mainly at the post-transcriptional or translational level) induced by small (21–23 nucleotides) RNA molecules, including siRNA (small interfering RNA). Suppression of gene expression by RNAi represents an important part of the regulation of gene expression. Interestingly, recent advancements in RNAi research support the notion that RNAi can be regulated just as an ordinary gene. In this issue of the Biochemical Journal, Hong et al. report their finding that suppression of RNAi is triggered by a high dose of siRNA in mice, and the suppression of RNAi in mice is related to eri-1 (enhanced RNA interference). Eri-1 is an RNaseT enzyme initially found in Caenorhabditis elegans that can degrade double-stranded RNA with 3′ overhangs. The results presented by Hong et al. have the potential to be extended and contribute to our knowledge about the regulation of RNAi in mammals.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 601-609 ◽  
Author(s):  
Zsolt Tallóczy ◽  
Rebecca Mazar ◽  
Denise E Georgopoulos ◽  
Fausto Ramos ◽  
Michael J Leibowitz

Abstract The cytoplasmically inherited [KIL-d] element epigenetically regulates killer virus gene expression in Saccharomyces cerevisiae. [KIL-d] results in variegated defects in expression of the M double-stranded RNA viral segment in haploid cells that are “healed” in diploids. We report that the [KIL-d] element is spontaneously lost with a frequency of 10−4–10−5 and reappears with variegated phenotypic expression with a frequency of ≥10−3. This high rate of loss and higher rate of reappearance is unlike any known nucleic acid replicon but resembles the behavior of yeast prions. However, [KIL-d] is distinct from the known yeast prions in its relative guanidinium hydrochloride incurability and independence of Hsp104 protein for its maintenance. Despite its transmissibility by successive cytoplasmic transfers, multiple cytoplasmic nucleic acids have been proven not to carry the [KIL-d] trait. [KIL-d] epigenetically regulates the expression of the M double-stranded RNA satellite virus genome, but fails to alter the expression of M cDNA. This specificity remained even after a cycle of mating and meiosis. Due to its unique genetic properties and viral RNA specificity, [KIL-d] represents a new type of genetic element that interacts with a viral RNA genome.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


Sign in / Sign up

Export Citation Format

Share Document