The effect of gadolinium DTPA on tissue water compartments in slow- and fast-twitch rabbit muscles

1989 ◽  
Vol 11 (2) ◽  
pp. 172-181 ◽  
Author(s):  
I. Kofi Adzamli ◽  
Ferenc A. Jolesz ◽  
Alan R. Bleier ◽  
Robert V. Mulkern ◽  
Tamas Sandor
2001 ◽  
Vol 45 (4) ◽  
pp. 580-587 ◽  
Author(s):  
B.A. Inglis ◽  
E.L. Bossart ◽  
D.L. Buckley ◽  
E.D. Wirth ◽  
T.H. Mareci

1977 ◽  
Vol 232 (4) ◽  
pp. F358-F363
Author(s):  
G. E. Lyman ◽  
W. J. Waddell

The distribution of [14C-a1acetyl-4-aminoantipyrine ([14C]NAAP), as indicators of total tissue water, and [carboxy-14C]inulin ([14C]inulin), as an indicator of extracellular water, were studied by autography in mice 4-16 days old. An autographic technique was used that does not translocate or remove the radioactive material. Photometric densities of the autoradiographs revealed wide variations in radioactivity among the various areas of the teeth. Evidence for binding of [14C]urea to bone limits the usefulness of this compound as an indicator. Although [14C]inulin appeared to be a reliable indicator, it is difficult to correlate its distribution with the progress of mineralization determined by electron microprobe analysis. [14C]NAAP was considered to be the most reliable indicator; it revealed that the water content of various areas of the teeth ranged from 7 to 100% of that in blood.


Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


2007 ◽  
Vol 7 (3) ◽  
pp. 163-170
Author(s):  
N. Jacimovic ◽  
T. Hosoda ◽  
M. Ivetic ◽  
K. Kishida

The paper presents a mechanistic/deterministic model for simulation of mass removal during air sparging. From the point of numerical modeling, there are two issues considering air sparging: modeling of air flow and distribution and modeling of mass transport and transfer. Several processes, which are commonly neglected, such as air channeling and pollutant advection by the water phase, are taken into account. The numerical model presented in this paper considers all relevant for mass transfer during the air sparging. Model includes hydrodynamics of air and water phase; calculated air volume content is divided into a number of air channels surrounded by the water phase, which is divided into two compartments. First compartment is immobile and it is in contact with air phase, while the second compartment is mobile. This “mobile-immobile” formulation is a common approach for description of solute transport by groundwater. Mass transfer between two water compartments is modeled as a first order kinetic, where the mass transfer coefficient, representing diffusion and advection in the water phase towards the air channels, is parameter needed to be calibrated. Sorption for both water compartments is considered. The adopted model of contaminant evaporation at the air-water interface is verified by comparison with experimental results available from published sources. Model is used for simulation of two-dimensional air sparging laboratory experiment. Good overall agreement is observed. It is showed that the efficiency of air sparging can be influenced by natural groundwater flow.


1993 ◽  
Vol 3 (3) ◽  
pp. 155-166 ◽  
Author(s):  
Patricia Berjak ◽  
Christina W. Vertucci ◽  
N. W. Pammenter

AbstractThe effect of rate of dehydration was assessed for embryonic axes from mature seeds of Camellia sinensis and the desiccation sensitivity of axes of different developmental stages was estimated using electrolyte leakage. Rapidly (flash) dried excised axes suffered desiccation damage at lower water contents (0.4 g H2O (g DW)−1) than axes dried more slowly in the whole seed (0.9 g H2O (g DW)−1). It is possible that flash drying of isolated axes imposes a stasis on deteriorative reactions that does not occur during slower dehydration. Differential scanning calorimetry (DSC) of the axes indicated that the enthalpy of the melting and the amount of non-freezable water were similar, irrespective of the drying rate.Very immature axes that had completed morphogenesis and histodifferentiation only were more sensitive to desiccation (damage at 0.7 g H2O (g DW)−1) than mature axes or axes that were in the growth and reserve accumulation phase (damage at 0.4 g H2O (g DW)−1). As axes developed from maturity to germination, their threshold desiccation sensitivity increased to a higher level (1.3−1.4 g H2O (g DW)−1). For the very immature axes, enthalpy of the melting of tissue water was much lower, and the level of non-freezable water considerably higher, than for any other developmental stage studied.There were no marked correlations between desiccation sensitivity and thermal properties of water. Desiccation sensitivity appears to be related more to the degree of metabolic activity evidenced by ultrastructural characteristics than to the physical properties of water.


1982 ◽  
Vol 257 (19) ◽  
pp. 11689-11695
Author(s):  
W B Van Winkle ◽  
R J Bick ◽  
D E Tucker ◽  
C A Tate ◽  
M L Entman

2021 ◽  
Vol 11 (5) ◽  
pp. 436
Author(s):  
Hung-Jen Shih ◽  
Chao-Yuan Chang ◽  
Milton Chiang ◽  
Van Long Le ◽  
Hao-Jen Hsu ◽  
...  

Three major cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, mediate endotoxemia-induced liver injury. With the similar structures to the binding domains of the three cytokines to their cognate receptors, the novel peptide KCF18 can simultaneously inhibit TNF-α, IL-1β, and IL-6. We elucidated whether KCF18 can alleviate injury of liver in endotoxemic mice. Adult male mice (BALB/cJ) were intraperitoneally (i.p.) administered lipopolysaccharide (LPS, 15 mg/kg; LPS group) or LPS with KCF18 (LKCF group). Mice in the LKCF group received KCF18 (i.p.) at 2 h (0.6 mg/kg), 4 h (0.3 mg/kg), 6 h (0.3 mg/kg), and 8 h (0.3mg/kg) after LPS administration. Mice were sacrificed after receiving LPS for 24 h. Our results indicated that the binding levels of the three cytokines to their cognate receptors in liver tissues in the LKCF group were significantly lower than those in the LPS group (all p < 0.05). The liver injury level, as measured by performing functional and histological analyses and by determining the tissue water content and vascular permeability (all p < 0.05), was significantly lower in the LKCF group than in the LPS group. Similarly, the levels of inflammation (macrophage activation, cytokine upregulation, and leukocyte infiltration), oxidation, necroptosis, pyroptosis, and apoptosis (all p < 0.05) in liver tissues in the LKCF group were significantly lower than those in the LPS group. In conclusion, the KCF18 peptide–based simultaneous inhibition of TNF-α, IL-1β, and IL-6 can alleviate liver injury in mice with endotoxemia.


Sign in / Sign up

Export Citation Format

Share Document