scholarly journals The influence of the filler volume fraction on the mechanical behaviour of thermoplastic materials

PAMM ◽  
2004 ◽  
Vol 4 (1) ◽  
pp. 223-224
Author(s):  
Thomas Kletschkowski ◽  
Uwe Schomburg ◽  
Albrecht Betram
Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Ali Zamani ◽  
F. Handan Tezel ◽  
Jules Thibault

Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson’s upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.


2006 ◽  
Vol 16 (5) ◽  
pp. 248-257 ◽  
Author(s):  
Chrystel Loret ◽  
William J. Frith ◽  
Peter J. Fryer

Abstract When two biopolymers are mixed together, they will normally phase separate to give two distinct phases. If the biopolymers are gelled during this phase separation, for instance by reducing the temperature, one phase is trapped in this other one and an emulsion-like composite structure is obtained. In this study, we investigated the effect of volume fraction and droplet size of this dispersed phase on the mechanical properties of maltodextrin/agarose gel composites, where agarose is the dispersed phase. Mechanical properties of the different composites were investigated under large deformation using a rheometer with a vane geometry. These composites were also observed by confocal microscopy, allowing conclusions to be drawn regarding the microstructural origins of the observed mechanical behaviour.


2020 ◽  
Vol 74 (6) ◽  
pp. 655-660
Author(s):  
Sebastián Tognana ◽  
Cristian D'Angelo ◽  
Walter Salgueiro ◽  
Susana Montecinos

A laser-induced breakdown spectroscopy (LIBS) technique was used to evaluate the filler content in particulate epoxy–copper composites. A potential application for a direct and fast measurement of the filler in composites through the LIBS results is suggested using calibrated samples. The methodology used in this work makes possible the incorporation of LIBS as a quantitative technique for the study of particle metal-filled epoxy composites, providing a method to obtain a direct estimation of the filler volume fraction.


2013 ◽  
Vol 86 (2) ◽  
pp. 218-232 ◽  
Author(s):  
Y. Fukahori ◽  
A. A. Hon ◽  
V. Jha ◽  
J. J. C. Busfield

ABSTRACT The modulus increase in rubbers filled with solid particles is investigated in detail here using an approach known widely as the Guth–Gold equation. The Guth–Gold equation for the modulus increase at small strains was reexamined using six different species of carbon black (Printex, super abrasion furnace, intermediate SAF, high abrasion furnace, fine thermal, and medium thermal carbon blacks) together with model experiments using steel rods and carbon nanotubes. The Guth–Gold equation is only applicable to such systems where the mutual interaction between particles is very weak and thus they behave independently of each other. In real carbon black–filled rubbers, however, carbon particles or aggregates are connected to each other to form network structures, which can even conduct electricity when the filler volume fraction exceeds the percolation threshold. In the real systems, the modulus increase due to the rigid filler deviates from the Guth–Gold equation even at a small volume fraction of the filler of 0.05–0.1, the deviation being significantly greater at higher volume fractions. The authors propose a modified Guth–Gold equation for carbon black–filled rubbers by adding a third power of the volume fraction of the blacks to the equation, which shows a good agreement with the experimental modulus increase (G/G0) for six species of carbon black–filled rubbers, where G and G0 are the modulus of the filled and unfilled rubbers, respectively; ϕeff is the effective volume fraction; and S is the Brunauer, Emmett, Teller surface area of the blacks. The modified Guth–Gold equation indicates that the specific surface volume ()3 closely relates to the bound rubber surrounding the carbon particles, and therefore this governs the reinforcing structures and the level of the reinforcement in carbon black–filled rubbers.


1995 ◽  
Vol 390 ◽  
Author(s):  
Pu-Woei Chen ◽  
D. D. L. Chung

ABSTRACTThe addition of a second discontinuous filler (silica fume) that is essentially nonconducting to a composite with a comparably non-conducting matrix (cement) and a conducting discontinuous filler (carbon fibers) was found to increase the electrical conductivity of the composite when the conducting filler volume fraction was less than 3.2%. The maximum conducting filler volume fraction for the second filler to be effective was only 0.5% when the second filler was sand, which was much coarser than silica fume. The improved conductivity due to the presence of the second filler is due to the improved dispersion of the conducting filler. The silica fume addition did not affect the percolation threshold, but the sand addition increased the threshold.


Author(s):  
A H Akbarzadeh ◽  
S K Hosseini Zad ◽  
M R Eslami ◽  
M Sadighi

This article presents an analytical solution for the mechanical behaviour of rectangular plates made of functionally graded materials (FGMs) based on the first-order shear deformation theory (FSDT) and the third-order shear deformation theory (TSDT). The FGM plate is assumed to be graded across the thickness. The material properties of the FGM plate are assumed to vary continuously through the thickness of the plate according to a power law distribution of the volume fraction of the constituent materials, except Poisson's ratio, which is assumed to be constant. The plate is subjected to a lateral mechanical load on its upper surface. The equations of motion are written based on displacement fields. The partial differential equations have been solved by the Fourier series expansion. Using the Laplace transform, unknown variables are obtained in the Laplace domain. The resulting formulations enable one to perform the static, dynamic, and free vibration analysis for both FSDT and TSDT plates. Employing the analytical Laplace inversion method and numerical time integration technique based on the Newmark method, time function solution of the problem is obtained and the unknown parameters are derived for a dynamic loading situation. Finally, the natural frequencies of the plate are obtained and dynamic responses are presented in the form of combinations of different frequencies. The results are verified with those reported in the literature.


1990 ◽  
Vol 63 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Siegfried Wolff ◽  
Jean-Baptiste Donnet

Abstract 1. Up to now, the application of the Einstein-Guth-Gold equation seemed to be limited to inactive fillers. 2. However, in the form of Equation (6), it describes with high accuracy the moduli of vulcanizates containing active fillers as a function of the filler volume fraction at least up to ϕ=0.22 at uniaxial elongations and for any given value of λ. 3. The effectiveness factor ƒ is independent of crosslinking density, but is dependent on deformation, temperature, and the surface activity of the filler. 4. If ƒ as a function of elongation is known, the respective stress-strain curves of filled networks can be calculated in advance for any given crosslinking density. 5. The interpretation of the effectiveness factor will require further investigations, especially with regard to the influence of the structure and surface activity of the filler.


Sign in / Sign up

Export Citation Format

Share Document