Improving the Electrical Conductivity of Composites Comprised of Short Conducting Fibers in a Nonconducting Matrix: The Addition of a Nonconducting Particulate Filler

1995 ◽  
Vol 390 ◽  
Author(s):  
Pu-Woei Chen ◽  
D. D. L. Chung

ABSTRACTThe addition of a second discontinuous filler (silica fume) that is essentially nonconducting to a composite with a comparably non-conducting matrix (cement) and a conducting discontinuous filler (carbon fibers) was found to increase the electrical conductivity of the composite when the conducting filler volume fraction was less than 3.2%. The maximum conducting filler volume fraction for the second filler to be effective was only 0.5% when the second filler was sand, which was much coarser than silica fume. The improved conductivity due to the presence of the second filler is due to the improved dispersion of the conducting filler. The silica fume addition did not affect the percolation threshold, but the sand addition increased the threshold.

Author(s):  
Xiaolong Gao ◽  
Yao Huang ◽  
Xiaoxiang He ◽  
Xiaojing Fan ◽  
Ying Liu ◽  
...  

Electrically conductive polymer composites are in high demand for modern technologies, however, the intrinsic brittleness of conducting conjugated polymers and the moderate electrical conductivity of engineering polymer/carbon composites have highly constrained their applications. In this work, super high electrical conductive polymer composites were produced by a novel hot embossing design. The polydimethylsiloxane (PDMS) composites containing short carbon fiber (SCF) exhibited an electrical percolation threshold at 0.45 wt%, and reached a saturated electrical conductivity of 49 S/m at 8 wt% of SCF. When reduced the sample thickness from 1.0 mm to 0.1 mm by the hot embossing process, a compression-induced percolation threshold occurred at 0.3 wt%, while the electrical conductivity was further enhanced to 378 S/m at 8 wt% SCF. Furthermore, the additional of a second nanofiller of 1 wt%, such as carbon nanotube or conducting carbon black further increased the electrical conductivity of the PDMS/SCF (8 wt%) composites to 909 S/m and 657 S/m, respectively. The synergy of the densified conducting filler network by the mechanical compression and the hierarchical micro-/nanoscale filler approach has realize super high electrical conductive yet mechanical flexible polymer composites for modern flexible electronics applications.


2019 ◽  
Vol 7 (2) ◽  
pp. 17-21
Author(s):  
M. Purushothaman ◽  
◽  
K. Natarajan

Concrete is regarded as a composite material that has good mechanical and durability properties for construction. However normal concrete is poor in electrical conductivity. An endeavour has been made with concrete to have all these three properties. The addition of small amounts of short carbon fibers and a nanomaterial silica fume to the concrete mixture causes an increase in strength and durability properties as well as electrical conductivity. In this paper, experimental results of compressive strength and electrical resistivity are presented. This Concrete technology can be applied with low voltage current for de-icing on highways and airfields, during snowfall in the winter season. This technique will help to reduce the cost and environmental issues of roads in snow fall region.


2021 ◽  
pp. 096739112110012
Author(s):  
Qingsen Gao ◽  
Jingguang Liu ◽  
Xianhu Liu

The effect of annealing on the electrical and rheological properties of polymer (poly (methyl methacrylate) (PMMA) and polystyrene (PS)) composites filled with carbon black (CB) was investigated. For a composite with CB content near the electrical percolation threshold, the formation of conductive pathways during annealing has a significant impact on electrical conductivity, complex viscosity, storage modulus and loss modulus. For the annealed samples, a reduction in the electrical and rheological percolation threshold was observed. Moreover, a simple model is proposed to explain these behaviors. This finding emphasizes the differences in network formation with respect to electrical or rheological properties as both properties belong to different physical origins.


2021 ◽  
pp. 108128652110214
Author(s):  
Xiaodong Xia ◽  
George J. Weng

Recent experiments have revealed two distinct percolation phenomena in carbon nanotube (CNT)/polymer nanocomposites: one is associated with the electrical conductivity and the other is with the electromagnetic interference (EMI) shielding. At present, however, no theories seem to exist that can simultaneously predict their percolation thresholds and the associated conductivity and EMI curves. In this work, we present an effective-medium theory with electrical and magnetic interface effects to calculate the overall conductivity of a generally agglomerated nanocomposite and invoke a solution to Maxwell’s equations to calculate the EMI shielding effectiveness. In this process, two complex quantities, the complex electrical conductivity and complex magnetic permeability, are adopted as the homogenization parameters, and a two-scale model with CNT-rich and CNT-poor regions is utilized to depict the progressive formation of CNT agglomeration. We demonstrated that there is indeed a clear existence of two separate percolative behaviors and showed that, consistent with the experimental data of poly-L-lactic acid (PLLA)/multi-walled carbon nanotube (MWCNT) nanocomposites, the electrical percolation threshold is lower than the EMI shielding percolation threshold. The predicted conductivity and EMI shielding curves are also in close agreement with experimental data. We further disclosed that the percolative behavior of EMI shielding in the overall CNT/polymer nanocomposite can be illustrated by the establishment of connective filler networks in the CNT-poor region. It is believed that the present research can provide directions for the design of CNT/polymer nanocomposites in the EMI shielding components.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Tohru Watanabe ◽  
Miho Makimura ◽  
Yohei Kaiwa ◽  
Guillaume Desbois ◽  
Kenta Yoshida ◽  
...  

AbstractElastic wave velocity and electrical conductivity in a brine-saturated granitic rock were measured under confining pressures of up to 150 MPa and microstructure of pores was examined with SEM on ion-milled surfaces to understand the pores that govern electrical conduction at high pressures. The closure of cracks under pressure causes the increase in velocity and decrease in conductivity. Conductivity decreases steeply below 10 MPa and then gradually at higher pressures. Though cracks are mostly closed at the confining pressure of 150 MPa, brine must be still interconnected to show observed conductivity. SEM observation shows that some cracks have remarkable variation in aperture. The aperture varies from ~ 100 nm to ~ 3 μm along a crack. FIB–SEM observation suggests that wide aperture parts are interconnected in a crack. Both wide and narrow aperture parts work parallel as conduction paths at low pressures. At high pressures, narrow aperture parts are closed but wide aperture parts are still open to maintain conduction paths. The closure of narrow aperture parts leads to a steep decrease in conductivity, since narrow aperture parts dominate cracks. There should be cracks in various sizes in the crust: from grain boundaries to large faults. A crack must have a variation in aperture, and wide aperture parts must govern the conduction paths at depths. A simple tube model was employed to estimate the fluid volume fraction. The fluid volume fraction of 10−4–10−3 is estimated for the conductivity of 10−2 S/m. Conduction paths composed of wide aperture parts are consistent with observed moderate fluctuations (< 10%) in seismic velocity in the crust.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Ali Zamani ◽  
F. Handan Tezel ◽  
Jules Thibault

Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson’s upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.


2008 ◽  
Vol 47-50 ◽  
pp. 714-717 ◽  
Author(s):  
Xin Lan ◽  
Jin Song Leng ◽  
Yan Ju Liu ◽  
Shan Yi Du

A new system of thermoset styrene-based shape-memory polymer (SMP) filled with carbon black (CB) is investigated. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3% (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB(10 vol%) can be realized in about 100s. In addition, the thermomechanical properties are also characterized by differential scanning calorimetery (DSC).


1990 ◽  
Vol 195 ◽  
Author(s):  
T.E. Schlesinger ◽  
A. Gavrin ◽  
R.C. Cammarata ◽  
C.-L. Chien

ABSTRACTThe mechanical properties of sputtered Ni-Al2O3 granular thin films were investigated by low load microharaness testing. It was found that the microhardness of these films displayed a percolation threshold at a nickel volume fraction of about 0.6, below which the hardness is greatly enhanced. This behavior is qualitatively similar to the electrical and magnetic properties of these types of films. A percolation threshold in hardness can be understood as due to a change in the mechanism for plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document