Defective in vitro growth of primitive hematopoietic cells from pediatric patients with acute myeloid leukemia

2008 ◽  
Vol 51 (6) ◽  
pp. 741-746 ◽  
Author(s):  
Elisa Dorantes-Acosta ◽  
Antonieta Chávez-González ◽  
José Ignacio Santos ◽  
Aurora Medina-Sanson ◽  
Hector Mayani
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Aurora Medina-Sanson ◽  
Arturo Ramírez-Pacheco ◽  
Silvia Selene Moreno-Guerrero ◽  
Elisa María Dorantes-Acosta ◽  
Metzeri Sánchez-Preza ◽  
...  

Cytarabine is one of the most effective antineoplastic agents among those used for the treatment of acute myeloid leukemia. However, some patients develop resistance and/or severe side effects to the drug, which may interfere with the efficacy of the treatment. The polymorphisms of some Ara-C metabolizing enzymes seem to affect outcome and toxicity in AML patients receiving cytarabine. We conducted this study in a cohort of Mexican pediatric patients with AML to investigate whether the polymorphisms of the deoxycytidine kinase and cytidine deaminase enzymes are implicated in clinical response and toxicity. Bone marrow and/or peripheral blood samples obtained at diagnosis from 27 previously untreated pediatric patients withde novoAML were processed for genotyping andin vitrochemosensitivity assay, and we analyzed the impact of genotypes andin vitrosensitivity on disease outcome and toxicity. In the multivariate Cox regression analysis, we found that age at diagnosis, wild-type genotype of the CDA A79C polymorphism, and wild-type genotype of the dCK C360G polymorphism were the most significant prognostic factors for predicting the risk of death.


Author(s):  
Weijuan Lei ◽  
Juliar Lin ◽  
Fang Liu ◽  
Nina Chen

PURPOSE: Acute myeloid leukemia (AML) is a type of hematologic malignancy. This study was attempt to explore the effect of long noncoding RNA GAS6 antisense RNA1 (GAS6-AS1) on pediatric AML and the regulation mechanisms. METHODS: GAS6-AS1, microRNA-370-3p (miR-370-3p), and Tetraspanin3 (TSPAN3) expression in bone marrow (BM) tissues and cells was determined by qRT-PCR. The correlation between GAS6-AS1 and clinicopathological features of pediatric patients with AML was assessed. In vitro, viability and migration and invasion of AML cells were evaluated via MTT and transwell assays, respectively. Interactions among GAS6-AS1, miR-370-3p, and TSPAN3 were revealed by dual-luciferase reporter assays. Western blot was applied to confirm the protein expression of TSPAN3. RESULTS: GAS6-AS1 and TSPAN3 expression was elevated in BM tissues of pediatric patients with AML and AML cells, but miR-370-3p expression was reduced. GAS6-AS1 expression was positively related to French-American-British (FAB) classification in pediatric patients with AML. In vitro, GAS6-AS1 deficiency restrained the viability, migration, and invasion of AML cells. Additionally, GAS6-AS1 mediated miR-370-3p expression indeed and TSPAN3 was identified as a target of miR-370-3p. Furthermore, miR-370-3p overexpression repressed the protein expression of TSPAN3. The feedback experiments demonstrated that miR-370-3p inhibition or TSPAN3 overexpression mitigated the suppressive effect of sh-GAS6-AS1 on the tumorigenesis of AML cells. CONCLUSION: GAS6-AS1 silencing restrained AML cell viability, migration, and invasion by targeting miR-370-3p/TSPAN3 axis, affording a novel therapeutic target for pediatric AML.


Blood ◽  
2009 ◽  
Vol 114 (8) ◽  
pp. 1596-1606 ◽  
Author(s):  
Ayten Kandilci ◽  
Gerard C. Grosveld

Abstract Forced expression of MN1 in primitive mouse hematopoietic cells causes acute myeloid leukemia and impairs all-trans retinoic acid-induced granulocytic differentiation. Here, we studied the effects of MN1 on myeloid differentiation and proliferation using primary human CD34+ hematopoietic cells, lineage-depleted mouse bone marrow cells, and bipotential (granulocytic/monocytic) human acute myeloid leukemia cell lines. We show that exogenous MN1 stimulated the growth of CD34+ cells, which was accompanied by enhanced survival and increased cell cycle traverse in cultures supporting progenitor cell growth. Forced MN1 expression impaired both granulocytic and monocytic differentiation in vitro in primary hematopoietic cells and acute myeloid leukemia cell lines. Endogenous MN1 expression was higher in human CD34+ cells compared with both primary and in vitro–differentiated monocytes and granulocytes. Microarray and real-time reverse-transcribed polymerase chain reaction analysis of MN1-overexpressing CD34+ cells showed down-regulation of CEBPA and its downstream target genes. Reintroduction of conditional and constitutive CEBPA overcame the effects of MN1 on myeloid differentiation and inhibited MN1-induced proliferation in vitro. These results indicate that down-regulation of CEBPA activity contributes to MN1-modulated proliferation and impaired myeloid differentiation of hematopoietic cells.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


Sign in / Sign up

Export Citation Format

Share Document