PDMS-modified CaO-SiO2 hybrids derived by a sol-gel process for biomedical applications

2013 ◽  
Vol 35 (6) ◽  
pp. 1193-1197 ◽  
Author(s):  
Jing Chen ◽  
Wenxiu Que ◽  
Zuoli He ◽  
Xuehua Zhang
Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Luis Rodríguez-Alonso ◽  
Jesús López-Sánchez ◽  
Aida Serrano ◽  
Oscar Rodríguez de la Fuente ◽  
Juan Carlos Galván ◽  
...  

Physiological human fluid is a natural corrosive environment and can lead to serious corrosion and mechanical damages to light Mg–Al alloys used in prosthetics for biomedical applications. In this work, organic–inorganic hybrid coatings doped with various environmentally friendly and non-toxic corrosion inhibitors have been prepared by the sol-gel process for the corrosion protection of AZ61 magnesium alloys. Effectiveness has been evaluated by pH measurements, optical microscopy, and SEM during a standard corrosion test in a Hanks’ Balanced Salt Solution. The results showed that the addition of an inhibitor to the sol-gel coating can improve significantly the corrosion performance, being an excellent barrier for the L-cysteine-doped hybrid sol-gel films. The incorporation of TiO2 nanoparticles, 2-Aminopyridine and quinine organic molecules slowed down the corrosion rate of the Mg–Al alloy. Graphene oxide seemed to have the same response to corrosion as the hybrid sol-gel coating without inhibitors.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4256
Author(s):  
Sophie Wendels ◽  
Deyvid de Souza Porto ◽  
Luc Avérous

Organic–inorganic xerogel networks were synthesized from bacterial poly (3-hydroxybutyrate) (PHB) for potential biomedical applications. Since silane-based networks usually demonstrate increased biocompatibility and mechanical properties, siloxane groups have been added onto polyurethane (PU) architectures. In this work, a diol oligomer (oligoPHB-diol) was first prepared from bacterial poly(3-hydroxybutyrate) (PHB) with an environmentally friendly method. Then, hexamethylene diisocyanate or biobased dimeryl diisocyanate was used as diisocyanate to react with the short oligoPHB-diol for the synthesis of different NCO-terminated PU systems in a bulk process and without catalyst. Various PU systems containing increasing NCO/OH molar ratios were prepared. Siloxane precursors were then obtained after reaction of the NCO-terminated PUs with (3-aminopropyl)triethoxysilane, resulting in silane-terminated polymers. These structures were confirmed by different analytical techniques. Finally, four series of xerogels were prepared via a sol–gel process from the siloxane precursors, and their properties were evaluated depending on varying parameters such as the inorganic network crosslinking density. The final xerogels exhibited adequate properties in connection with biomedical applications such as a high in vitro degradation up to 15 wt% after 12 weeks.


Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2003 ◽  
Vol 771 ◽  
Author(s):  
Amir Fardad ◽  
Wei Liang ◽  
Yadong Zhang ◽  
Bryson Case ◽  
Shibin Jiang ◽  
...  

AbstractFluorinated and photo-imageable precursors are synthesized through a Barbier-Grignard reaction for 1550-nm window. The precursors are used for the sol-gel process of integrated optic components for silica-on-silicon technology. Material compositions and process parameters are optimized to achieve internal absorptions >0.1 dB/cm and propagation losses of about 0.5 dB/cm at 1550 nm. Compact 1×16 Beam splitters are designed and fabricated which exhibit >0.3 dB power uniformity, >0.1 dB PDL and 1.5 dB coupling loss. By hybrid integration of the passive splitters and in-house fiber amplifiers, amplifying splitters are demonstrated at various signal intensities.


2017 ◽  
Vol 59 (1) ◽  
pp. 81-85
Author(s):  
Jianjun Zhang ◽  
Hao Zeng ◽  
Chun Liu ◽  
Chao Li ◽  
Sude Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document