Polypropylene/nTiO2 nanocomposites using melt mixing and its investigation on mechanical and thermal properties

2015 ◽  
Vol 38 (7) ◽  
pp. 1273-1279 ◽  
Author(s):  
Navinchandra Shimpi ◽  
Sharada Shirole ◽  
Satyendra Mishra
2020 ◽  
Vol 54 (18) ◽  
pp. 2489-2504 ◽  
Author(s):  
Ulas Can ◽  
Cevdet Kaynak

The main purpose of this study was to investigate mechanical and thermal performance of polylactide specimens against UV irradiation; first when only adding benzotriazole benzotriazole-based organic UV absorber (UVA), micro (200 nm) and nano (50 nm) sized titania (TiO2) particles alone, and then to reveal possible synergism when they are added together. Compounds were prepared by twin-screw extruder melt mixing, while the 2 mm thick specimens were shaped by compression molding. Specimens were exposed to UV irradiation under fluorescent lamps (UVB-313) with 0.50 W/m2 for the periods of 12 and 24 days. Changes in the performance of UV irradiated specimens were evaluated in terms of % weight loss, changes in color and chemical structure, including the decreases in the mechanical and thermal properties. Various tests and analysis revealed that synergistic benefits of using micro and nano TiO2 particles together with benzotriazole-type UVA were not only due to the effective stiffening, strengthening and toughening actions of titania particles, but also due to their very significant “UV screening” actions absorbing the photons of the UV irradiation, thus decreasing the degree of the detrimental photodegradation reactions leading to chain scissions in their PLA matrix.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1557 ◽  
Author(s):  
Khaliq Majeed ◽  
Ashfaq Ahmed ◽  
Muhammad Saifullah Abu Bakar ◽  
Teuku Meurah Indra Mahlia ◽  
Naheed Saba ◽  
...  

In recent years, there has been considerable interest in the use of natural fibers as potential reinforcing fillers in polymer composites despite their hydrophilicity, which limits their widespread commercial application. The present study explored the fabrication of nanocomposites by melt mixing, using an internal mixer followed by a compression molding technique, and incorporating rice husk (RH) as a renewable natural filler, montmorillonite (MMT) nanoclay as water-resistant reinforcing nanoparticles, and polypropylene-grafted maleic anhydride (PP-g-MAH) as a compatibilizing agent. To correlate the effect of MMT delamination and MMT/RH dispersion in the composites, the mechanical and thermal properties of the composites were studied. XRD analysis revealed delamination of MMT platelets due to an increase in their interlayer spacing, and SEM micrographs indicated improved dispersion of the filler(s) from the use of compatibilizers. The mechanical properties were improved by the incorporation of MMT into the PP/RH system and the reinforcing effect was remarkable as a result of the use of compatibilizing agent. Prolonged water exposure of the prepared samples decreased their tensile and flexural properties. Interestingly, the maximum decrease was observed for PP/RH composites and the minimum was for MMT-reinforced and PP-g-MAH-compatibilized PP/RH composites. DSC results revealed an increase in crystallinity with the addition of filler(s), while the melting and crystallization temperatures remained unaltered. TGA revealed that MMT addition and its delamination in the composite systems improved the thermal stability of the developed nanocomposites. Overall, we conclude that MMT nanoclay is an effective water-resistant reinforcing nanoparticle that enhances the durability, mechanical properties, and thermal stability of composites.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1076
Author(s):  
Masrat Rasheed ◽  
Mohammad Jawaid ◽  
Bisma Parveez

The purpose of this work was to investigate the effect of cellulose nanocrystals (CNC) from bamboo fiber on the properties of poly (lactic acid) (PLA)/poly (butylene succinate) (PBS) composites fabricated by melt mixing at 175 °C and then hot pressing at 180 °C. PBS and CNC (0.5, 0.75, 1, 1.5 wt.%) were added to improvise the properties of PLA. The morphological, physiochemical and crystallinity properties of nanocomposites were analysed by field emission scanning electron microscope (FESEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD), respectively. The thermal and tensile properties were analysed by thermogravimetic analysis (TGA), Differential scanning calorimetry (DSC) and Universal testing machine (UTM). PLA-PBS blend shows homogeneous morphology while the composite shows rod-like CNC particles, which are embedded in the polymer matrix. The uniform distribution of CNC particles in the nanocomposites improves their thermal stability, tensile strength and tensile modulus up to 1 wt.%; however, their elongation at break decreases. Thus, CNC addition in PLA-PBS matrix improves structural and thermal properties of the composite. The composite, thus developed, using CNC (a natural fiber) and PLA-PBS (biodegradable polymers) could be of immense importance as they could allow complete degradation in soil, making it a potential alternative material to existing packaging materials in the market that could be environment friendly.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3180
Author(s):  
Fatin Najwa Joynal Joynal Abedin ◽  
Hamidah Abdul Hamid ◽  
Abbas F. M. Alkarkhi ◽  
Salem S. Abu Amr ◽  
Nor Afifah Khalil ◽  
...  

In this study, acrylonitrile butadiene styrene (ABS)/talc/graphene oxide/SEBS-g-MAH (ABS/Talc/GO/SEBS-g-MAH) and acrylonitrile butadiene styrene/graphene oxide/SEBS-g-MAH (ABS/GO/SEBS-g-MAH) composites were isolated with varying graphene oxide (0.5 to 2.0 phr) as a filler and SEBS-g-MAH as a compatibilizer (4 to 8 phr), with an ABS:talc ratio of 90:10 by percentage. The influences of graphene oxide and SEBS-g-MAH loading in ABS/talc composites were determined on the mechanical and thermal properties of the composites. It was found that the incorporation of talc reduces the stiffness of composites. The analyses of mechanical and thermal properties of composites revealed that the inclusion of graphene oxide as a filler and SEBS-g-MAH as a compatibilizer in the ABS polymer matrix significantly improved the mechanical and thermal properties. ABS/talc was prepared through melt mixing to study the fusion characteristic. The mechanical properties showed an increase of 30%, 15%, and 90% in tensile strength (TS), flexural strength (FS), and flexural modulus (FM), respectively. The impact strength (IS) resulted in comparable properties to ABS, and it was better than the ABS/talc composite due to the influence of talc in the composite that stiffens and reduces the extensibility of plastic. The incorporation of GO and SEBS-g-MA also shows a relatively higher thermal stability in both composites with and without talc. The finding of the present study reveals that the graphene oxide and SEBS-g-MAH could be utilized as a filler and a compatibilizer in ABS/talc composites to enhance the thermo-mechanical stability because of the superior interfacial adhesion between the matrix and filler.


2018 ◽  
Vol 2 (3) ◽  
pp. 37 ◽  
Author(s):  
Suman Chhetri ◽  
Nitai Adak ◽  
Pranab Samanta ◽  
Naresh Murmu ◽  
Tapas Kuila

Author(s):  
Mohammad K. Hossain ◽  
Samira N. Shaily ◽  
Hadiya J. Harrigan ◽  
Terrie Mickens

The objective of this research is to prepare a hybrid biopolymer blend using PLA and PHBV with enhanced mechanical and thermal properties. Bio-based PLA and PHBV blends were prepared using the melt-mixing procedure. Tensile, FTIR, DSC, TGA, optical microscopy (OM), and scanning electron microscopy (SEM) tests were performed to investigate mechanical properties, bonding interaction, glass transition temperature, melting and crystalline enthalpy, thermal decomposition, and morphological analysis. Different percent (1, 2, and 3 wt%) of nanoclay was added to the system to observe the bonding interaction. It was observed that the crystallinity increases with increasing amount of nanoclay. The result showed that the tensile strength of PLA thin film and PHBV film was found to be 31.1 MPa and 14.41 MPa, respectively. Hence, PLA has better mechanical property than PHBV. On the other hand, thermal property of PHBV thin film was found to be better than that of PLA. To optimize both mechanical and thermal properties of PLA and PHBV hybrid biopolymer blend, using various combinations of PLA/PHBV including 25/75, 50/50 and 75/25 wt% a hybrid biopolymer blend was prepared. Among them, PLA-PHBV (75/25 wt%) with 2 wt% nanoclay resulted in the best outcome. The tensile strength of this prepared polymer blend was 29.34 MPa. Thermal analysis demonstrated two melting temperatures: 238.37 °C and 308.31 °C, respectively. Two glass transition temperatures were found from thermal tests which are the indication of the solution immiscibility. It had also been observed that the adding of nanoclay enhances tensile properties as well as thermal stability up to 2 wt%. It is revealed from the optical and SEM micrographs that the 2 wt% NC was dispersed uniformly throughout the resin blend.


Polimery ◽  
2021 ◽  
Vol 66 (9) ◽  
pp. 459-465
Author(s):  
Intan Najwa Humaira Mohamed Haneef ◽  
Yose Fachmi Buys ◽  
Norhashimah Mohd Shaffiar ◽  
Sharifah Imihezri Syed Shaharuddin ◽  
Abdul Malek Abdul Hamid ◽  
...  

In this work, the influence of halloysite nanotubes (HNTs) on the mechanical and thermal properties of the poly(lactic acid)/polypropylene carbonate (PLA/PPC 70/30) blend was studied. The HNT was incorporated into the PLA/PPC blend by melt mixing. It was found that addition of 2-6 wt % HNT successfully improved the tensile and flexural strength as well as the flexural and Young’s  moduli of PLA/PPC blend, due to the reinforcing effect. Although the elongation at break decreases with increasing HNT content, its value is much higher than that of pure PLA. Moreover, the addition of HNT didnot affect the miscibility of PLA and PPC, since two glass transition temperatures were observed in the DSC thermograms. However, a higher content of HNT may improve the compatibility between PLA and PPC as evidenced by the lower difference between the glass transition temperature of PPC and PLA and reduced crystallinity resulting in higher tensile strength of nanocomposites.Keywords: PLA, PPC, HNT, mechanical properties, thermal properties.


2019 ◽  
Vol 17 ◽  
pp. 534-542
Author(s):  
I.N.H.M. Haneef ◽  
Y.F. Buys ◽  
N.M. Shaffiar ◽  
S.I.S. Shaharuddin ◽  
M.K. Nor Khairusshima

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Florentino Soriano Corral ◽  
Luis Antonio Calva Nava ◽  
Ernesto Hernández Hernández ◽  
José Francisco Hernández Gámez ◽  
María Guadalupe Neira Velázquez ◽  
...  

Composites based on low-density polyethylene (LDPE) were prepared withAgavefiber powder (AFP) that was coated by plasma polymerization process using ethylene gas. Treated and pristine AFP were analyzed by infrared spectroscopy, scanning electron microscopy, and contact water angle for the assessment of surface properties. The polymer composites were prepared by melt mixing using 0, 5, 10, and 20 wt% of AFP and their mechanical and thermal properties were measured. Dispersion evaluation in water confirmed that the AFP treated changed from hydrophilic to hydrophobic behavior and it was also corroborated with water contact angle tests. The addition of treated and untreated AFP (200 mesh) at 20 wt% promotes an increase of Young’s modulus of the composites of up to 60% and 32%, respectively, in relation to the neat matrix. Also, an increase of crystallinity of LDPE was observed by the addition of treated and untreated AFP; however no significant effect on the crystallization temperature was observed in LDPE containing AFP.


Sign in / Sign up

Export Citation Format

Share Document