Application of choline chloride deep eutectic solvents and high‐speed counter‐current chromatography to the extraction and purification of flavonoids from the thorns of Gleditsia sinensis Lam

2020 ◽  
Author(s):  
Jinqian Yu ◽  
Lei Zhao ◽  
Xiaowei Sun ◽  
Chenglong Sun ◽  
Xiao Wang
Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 368
Author(s):  
Ana N. Nunes ◽  
Alexandra Borges ◽  
Ana A. Matias ◽  
Maria Rosário Bronze ◽  
Joana Oliveira

Anthocyanins are natural pigments displaying different attractive colors ranging from red, violet, to blue. These pigments present health benefits that increased their use in food, nutraceuticals, and the cosmetic industry. However, anthocyanins are mainly extracted through conventional methods that are time-consuming and involve the use of organic solvents. Moreover, the chemical diversity of the obtained complex extracts make the downstream purification step challenging. Therefore, the growing demand of these high-value pigments has stimulated the interest in designing new, safe, cost-effective, and tunable strategies for their extraction and purification. The current review focuses on the potential application of compressed fluid-based (such as subcritical and supercritical fluid extraction and pressurized liquid extraction) and deep eutectic solvents-based extraction methods for the recovery of anthocyanins. In addition, an updated review of the application of counter-current chromatography for anthocyanins purification is provided as a faster and cost-effective alternative to preparative-scale HPLC.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Silvia T. Huerta-Marcial ◽  
Josué D. Mota-Morales

AbstractHigh internal phase emulsions (HIPEs) are among complex biphasic fluids that expand on the traditional emulsion compositions, for instance, for the preparation of macroporous polymers by emulsion templating. The use of deep eutectic solvents (DESs) as the nonaqueous internal phase of HIPEs allows expanding the conditions at which polymerizations are typically carried out in aqueous HIPEs. Herein, the properties of polystyrene macroporous polymers were studied by polymerizing DES-in-oil HIPEs using choline chloride-based DESs as the internal phase. The effect of DESs’ composition – with amide, alcohol, and carboxylic acid as hydrogen bond donors – and the homogenization method used for the HIPE preparation – vortexing versus high-speed homogenizer – was studied. The stability and droplet size of HIPE precursor, as well as the macroporous structure and the mechanical properties of the synthesized polyHIPEs, are discussed.


2010 ◽  
Vol 28 (8) ◽  
pp. 813-816
Author(s):  
Wei JI ◽  
Yulan CUI ◽  
Renjuan CHEN ◽  
Xinren LIN ◽  
Qingxin ZHOU ◽  
...  
Keyword(s):  

2010 ◽  
Vol 28 (4) ◽  
pp. 383-387 ◽  
Author(s):  
Aiyi PENG ◽  
Xuewei QU ◽  
Hui LI ◽  
Lu GAO ◽  
Bo YU ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 138-143
Author(s):  
Tianyun Li ◽  
Xiling Dai ◽  
Yichen Li ◽  
Guozheng Huang ◽  
Jianguo Cao

Background:Stenoloma chusanum (L.) Ching is a Chinese traditional medicinal fern with high total flavonoid and total phenolic content. Traditionally, phenolic compounds were separated by using column chromatography, which is relatively inefficient. </P><P> Objective: This study aims to use an efficient method to separate natural products from S. chusanum by Medium-Pressure Liquid Chromatography (MPLC) and High-Speed Counter-Current Chromatography (HSCCC).Methods:In the present research, firstly, a sample (2.5 g) from the dichloromethane extract of S. chusanum was separated by MPLC. Next, fraction P5 was purified by HSCCC with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water (HEMWat) at a volume ratio of 2:4:1:4 (v/v/v/v). </P><P> Result: Four phenolic acids were obtained and their structures were identified by means of NMR and ESI-mass analysis. They were identified as: 1) protocatechuic acid (34 mg, purity 90.1%), 2) syringic acid (66 mg, purity 99.0%), 3) p-hydroxybenzoic acid (5 mg, purity 91.2%) and 4) vanillic acid (6 mg, purity 99.3%).Conclusion:The combination of MPLC and HSCCC is a high-efficiency separation method for natural products. This is the first report with regard to the separation of four phenolic acids in one step by MPLC and HSCCC from S. chusanum (L.) Ching.


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Sun ◽  
Qintang Li ◽  
Xiao Chen

Luminescent gels have been successfully fabricated through the self-assembly of sodium cholate and a europium ion in choline chloride-based deep eutectic solvents.


Author(s):  
Xue Yang ◽  
Yongling Liu ◽  
Tao Chen ◽  
Nana Wang ◽  
Hongmei Li ◽  
...  

Abstract Separation of natural compounds directly from the crude extract is a challenging work for traditional column chromatography. In the present study, an efficient method for separation of three main compounds from the crude extract of Dracocephalum tanguticum has been successfully established by high-speed counter-current chromatography (HSCCC). The crude extract was directly introduced into HSCCC by using dimethyl sulfoxide as cosolvent. Ethyl acetate/n-butyl alcohol/0.3% glacial acetic acid (4: 1: 5, v/v) system was used and three target compounds with purity higher than 80% were obtained. Preparative HPLC was used for further purification and three target compounds with purity higher than 98% were obtained. The compounds were identified as chlorogenic acid, pedaliin and pedaliin-6″-acetate.


2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


Sign in / Sign up

Export Citation Format

Share Document