Improved part strength for the fused deposition 3D printing technique by chemical modification of polylactic acid

2018 ◽  
Vol 59 (s2) ◽  
pp. E59-E64 ◽  
Author(s):  
Mohammed T. Alturkestany ◽  
Vishrut Panchal ◽  
Michael R. Thompson
2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Benedikt Hampel ◽  
Samuel Monshausen ◽  
Meinhard Schilling

AbstractIn consequence of the growing diversity of materials in the fused deposition modeling 3D printing technique, electrically conductive materials are commercially available. In this work two filaments based on thermoplastics filled with carbon or metal nanoparticles are analyzed in terms of their electrical conductance. The printing parameters to process the materials with the 3D printer are optimized with the design of experiments (DoE) method. A model to calculate the resistance of such 3D printed structures is presented and a demonstrator as a proof of concept was 3D printed based on these results. In addition, 3D printing of capacitors is investigated.


2021 ◽  
pp. 026248932110409
Author(s):  
G Radhakrishna ◽  
Rupesh Dugad ◽  
Abhishek Gandhi

In this article, the development of microcellular structure foams has developed by integrating the two successful and existing technologies, namely CO2 gas batch foaming and Fused Deposition Modeling (FDM) 3D printing technique. It is a novel approach to manufacture complex design porous products for customized applications. The eventual cell morphologies of the extruded 3D printing filament depends on the process parameters pertaining to both microcellular foaming and 3D printing processes. Further, morphological study has been conducted to evaluate the cell morphologies of the 3D printing filament developed through customized FDM setup. During this process, the significance of various process parameters including saturation pressure, saturation time, desorption time, feed rate and extrusion temperature were thoroughly studied. To pursue this study base material used was acrylonitrile butadiene styrene (ABS). The 3D printed filaments consisted of cells with an average cell size in the range of 2.3–276 µm and the average cell density in the range of 4.7 × 104 to 4.3 × 109 cells/cm3. Finally, it has found that by controlling the process parameters different cell morphologies can be developed as per the end application.


Compounds ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 94-115
Author(s):  
Muhammad Arif Mahmood

Personalized medicines are gaining popularity day by day as they empower patient genomics and assist in improved drug design with minimum side effects. Various dosages can be combined into one dose that fits the patient’s requirements. For this purpose, 3D printing is a new technology to produce medicine based on patient needs. It utilizes controlled devices to prepare active pharmaceutical ingredients (API) in a layer-wise fashion to develop an appropriate tailored drug transport structure. It contains numerous methods, including inkjet printing and fused deposition modeling. For this purpose, scientists have used various materials, including polyvinyl alcohol, polylactic acid and polycaprolactone. These materials have been applied to design and develop forms that are suitable for tuning the drug release. Different forms of dosages, including tablets (immediate and pulsatile release) and transdermic dosages, can be produced using the 3D printing technique. Furthermore, the 3D printing technique can also be used to prepare customized medicines to treat life-threatening diseases. In the case of patients needing various medicines, a 3D printer can be used to design and manufacture only one dosage incorporating different medicines. This article reviewed 3D printing utilization for customized medicines based on one’s needs. Various methods and materials used in medicine 3D printing were discussed with their applications.


2017 ◽  
Vol 52 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Hoejin Kim ◽  
Torres Fernando ◽  
Mingyue Li ◽  
Yirong Lin ◽  
Tzu-Liang Bill Tseng

This paper presents a fabrication process to enhance homogeneous dispersion of BaTiO3 nanoparticles in polyvinylidene fluoride matrix nanocomposites using fused deposition modeling (FDM) 3D printing technique. The nanocomposites integrate the functional property (piezoelectric, pyroelectric, and dielectric) of BaTiO3 with the flexibility and lightweight of polyvinylidene fluoride. Traditionally, the simple yet effective way to fabricate the nanocomposites includes solvent-casting, spin-coating, and hot-embossing. However, these methods have disadvantages such as heterogeneous dispersion of BaTiO3 nanoparticles in polyvinylidene fluoride matrix due to the higher density of BaTiO3 compared with polyvinylidene fluoride and agglomeration during fabrication process. This heterogeneous dispersion could weaken functional and mechanical properties. Herein, fused deposition modeling 3D printing technique was utilized for homogeneous dispersion to alleviate the agglomeration of BaTiO3 in polyvinylidene fluoride through two processes: filament extrusion and 3D printing. In addition, thermal poling was applied to further enhance piezoelectric response of the BaTiO3/polyvinylidene fluoride nanocomposites. It is found that 3D printed BaTiO3/polyvinylidene fluoride nanocomposites exhibit three times higher piezoelectric response than solvent-casted nanocomposites.


ACS Omega ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 12012-12017 ◽  
Author(s):  
Elmeri Lahtinen ◽  
Lotta Turunen ◽  
Mikko M. Hänninen ◽  
Kalle Kolari ◽  
Heikki M. Tuononen ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


Author(s):  
Anna Rokicińska ◽  
Marek Drozdek ◽  
Elżbieta Bogdan ◽  
Adam Węgrzynowicz ◽  
Piotr Michorczyk ◽  
...  

2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Nor Aiman Sukindar ◽  
M. K. A. Ariffin ◽  
B. T. Hang Tuah Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Fused deposition modeling (FDM) is one of the Rapid Prototyping (RP) technologies. The 3D Printer has been widely used in the fabrication of 3D products. One of the main issues has been to obtain a high quality for the finished parts. The present study focuses on the effect of nozzle diameter in terms of pressure drop, geometrical error as well as extrusion time. While using polylactic acid (PLA) as a material, the research was conducted using Finite Element Analysis (FEA) by manipulating the nozzle diameter, and the pressure drop along the liquefier was observed. The geometrical error and printing time were also calculated by using different nozzle diameters. Analysis shows that the diameter of the nozzle significantly affects the pressure drop along the liquefier which influences the consistency of the road width thus affecting the quality of the product’s finish. The vital aspect is minimizing the pressure drop to be as low as possible, which will lead to a good quality final product. The results from the analysis demonstrate that a 0.2 mm nozzle diameter contributes the highest pressure drop, which is not within the optimum range. In this study, by considering several factors including pressure drop, geometrical error and printing time, a 0.3 mm nozzle diameter has been suggested as being in the optimum range for extruding PLA material using open-source 3D printing. The implication of this result is valuable for a better understanding of the melt flow behavior of the PLA material and for choosing the optimum nozzle diameter for 3D printing.


Sign in / Sign up

Export Citation Format

Share Document