Relationships between crystalline structure and the thermal behavior of poly(ethylene 2,5‐furandicarboxylate): An in situ simultaneous SAXS‐WAXS study

2019 ◽  
Vol 59 (8) ◽  
pp. 1667-1677 ◽  
Author(s):  
Grégory Stoclet ◽  
Andrea Arias ◽  
Bahar Yeniad ◽  
Sicco De Vos
Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 605
Author(s):  
Marie-Emérentienne Cagnon ◽  
Silvio Curia ◽  
Juliette Serindoux ◽  
Jean-Manuel Cros ◽  
Feifei Ng ◽  
...  

This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixia Li ◽  
Meng Wang ◽  
Xiandong Wu ◽  
Wenping Yi ◽  
Qiang Xiao

AbstractNanocomposite modification has attracted much attention in improving properties of bio-based polymer coating material for coated fertilizer. Herein two comparable polyhedral oligomeric silsesquioxanes (POSS), with eight poly(ethylene glycol) (PEG) and octaphenyl groups attached to the cage, respectively, were successfully incorporated into thin castor oil-based polyurethane coatings via in-situ polymerization on the urea surface. The nanostructure coatings are environmentally friendly, easy to prepare, and property-tunable. The results show that the vertex group of POSS had a pronounced influence on dispersion level and interaction between polyurethane and POSS that well-tuned the release pattern and period of coated urea, even at the coating rate as low as of 2 wt%. The liquid POSS with long and flexible PEG groups had better compatibility and dispersibility in polyurethane matrix than the solid POSS with rigid octaphenyl groups, as evidenced by SEM/EDS. The unique properties were resulted from the different extents of physical crosslinkings. This modification of bio-based polyurethane coating with POSS provided an alternative method of regulating and controlling the properties of coated fertilizer.


2004 ◽  
Vol 37 (18) ◽  
pp. 7064-7064
Author(s):  
Yumi Matsumiya ◽  
Nitash P. Balsara ◽  
John B. Kerr ◽  
Tadashi Inoue ◽  
Hiroshi Watanabe

2001 ◽  
Vol 71 (12) ◽  
pp. 1053-1056 ◽  
Author(s):  
Yoichiro Muraoka ◽  
Tomoko Fujiwara ◽  
Yoshiyuki Sano ◽  
Tokugen Yasuda ◽  
Hajime Kanbara

Sign in / Sign up

Export Citation Format

Share Document