Ultrahigh-molecular-weight-polyethylene-fiber surface treatment by electron-beam-irradiation-induced graft polymerization and its effect on adhesion in a styrene-butadiene rubber matrix

2004 ◽  
Vol 42 (13) ◽  
pp. 2595-2603 ◽  
Author(s):  
K. Sakurai ◽  
Y. Kondo ◽  
K. Miyazaki ◽  
T. Okamoto ◽  
S. Irie ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2011 ◽  
Vol 415-417 ◽  
pp. 237-242
Author(s):  
Zhou Da Zhang ◽  
Xue Mei Chen ◽  
Guo Liang Qu

Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and (ii) the formation of P(SBR/CaCO3) by coagulating “new particles”. The SEM results also shown that the nano-CaCO3 and rubber matrix have formed a macroscopic homogenization in the (P(SBR/CaCO3) particles and nano-CaCO3 dispersed uniformly in the rubber matrix with an average diameter of approximately 50 nm.


2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 486 ◽  
Author(s):  
Elkid Cobani ◽  
Irene Tagliaro ◽  
Marco Geppi ◽  
Luca Giannini ◽  
Philippe Leclère ◽  
...  

Sepiolite (Sep)–styrene butadiene rubber (SBR) nanocomposites were prepared by using nano-sized sepiolite (NS-SepS9) fibers, obtained by applying a controlled surface acid treatment, also in the presence of a silane coupling agent (NS-SilSepS9). Sep/SBR nanocomposites were used as a model to study the influence of the modified sepiolite filler on the formation of immobilized rubber at the clay-rubber interface and the role of a self-assembled nanostructure in tuning the mechanical properties. A detailed investigation at the macro and nanoscale of such self-assembled structures was performed in terms of the organization and networking of Sep fibers in the rubber matrix, the nature of both the filler–filler and filler–rubber interactions, and the impact of these features on the reduced dissipative phenomena. An integrated multi-technique approach, based on dynamic measurements, nuclear magnetic resonance analysis, and morphological investigation, assessed that the macroscopic mechanical properties of clay nanocomposites can be remarkably enhanced by self-assembled filler structures, whose formation can be favored by manipulating the chemistry at the hybrid interfaces between the clay particles and the polymers.


2012 ◽  
Vol 430-432 ◽  
pp. 1076-1080
Author(s):  
Mei Chun Li ◽  
Xin Ge ◽  
Jong Hyuk Lim ◽  
Min Su Kim ◽  
Ur Ryong Cho

Starch/Styrene Butadiene Rubber (SBR) biocomposites were prepared by directly blending of starch and SBR on a two-roll miller. Two types of starch: pure starch and modified starch (M-starch) were used as rubber fillers. M-starch were synthesized by grafting of methyl methacrylate (MMA) monomer onto starch backbone using ceric ammonium nitrate-initiated radical polymerization. Coupling agent styrene-g-(maleic anhydride) (SMA) was used to further improve the interfacial interaction between the filler and rubber matrix. The morphology and mechanical properties of unmodified starch/SBR and M-starch/SBR biocomposites with SMA content of 0, 1, 3, and 5 phr were investigated. SEM observations showed the particle size of M-starch decreased and their dispersion in the SBR matrix significantly improved than unmodified starch. Mechanical properties of M-starch/SBR biocomposites were superior than those of unmodified starch/SBR biocomposites.


2018 ◽  
Vol 149 ◽  
pp. 14-25 ◽  
Author(s):  
Katarzyna S. Bandzierz ◽  
Louis A.E.M. Reuvekamp ◽  
Grażyna Przybytniak ◽  
Wilma K. Dierkes ◽  
Anke Blume ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document