Starch/SBR Biocomposites Prepared by Solid Blend Method: Effect of Surface Modification and Coupling Agent

2012 ◽  
Vol 430-432 ◽  
pp. 1076-1080
Author(s):  
Mei Chun Li ◽  
Xin Ge ◽  
Jong Hyuk Lim ◽  
Min Su Kim ◽  
Ur Ryong Cho

Starch/Styrene Butadiene Rubber (SBR) biocomposites were prepared by directly blending of starch and SBR on a two-roll miller. Two types of starch: pure starch and modified starch (M-starch) were used as rubber fillers. M-starch were synthesized by grafting of methyl methacrylate (MMA) monomer onto starch backbone using ceric ammonium nitrate-initiated radical polymerization. Coupling agent styrene-g-(maleic anhydride) (SMA) was used to further improve the interfacial interaction between the filler and rubber matrix. The morphology and mechanical properties of unmodified starch/SBR and M-starch/SBR biocomposites with SMA content of 0, 1, 3, and 5 phr were investigated. SEM observations showed the particle size of M-starch decreased and their dispersion in the SBR matrix significantly improved than unmodified starch. Mechanical properties of M-starch/SBR biocomposites were superior than those of unmodified starch/SBR biocomposites.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 486 ◽  
Author(s):  
Elkid Cobani ◽  
Irene Tagliaro ◽  
Marco Geppi ◽  
Luca Giannini ◽  
Philippe Leclère ◽  
...  

Sepiolite (Sep)–styrene butadiene rubber (SBR) nanocomposites were prepared by using nano-sized sepiolite (NS-SepS9) fibers, obtained by applying a controlled surface acid treatment, also in the presence of a silane coupling agent (NS-SilSepS9). Sep/SBR nanocomposites were used as a model to study the influence of the modified sepiolite filler on the formation of immobilized rubber at the clay-rubber interface and the role of a self-assembled nanostructure in tuning the mechanical properties. A detailed investigation at the macro and nanoscale of such self-assembled structures was performed in terms of the organization and networking of Sep fibers in the rubber matrix, the nature of both the filler–filler and filler–rubber interactions, and the impact of these features on the reduced dissipative phenomena. An integrated multi-technique approach, based on dynamic measurements, nuclear magnetic resonance analysis, and morphological investigation, assessed that the macroscopic mechanical properties of clay nanocomposites can be remarkably enhanced by self-assembled filler structures, whose formation can be favored by manipulating the chemistry at the hybrid interfaces between the clay particles and the polymers.


2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2020 ◽  
pp. 089270572093080
Author(s):  
MM Abdel-Aziz ◽  
Mona K Attia

The mechanical properties of γ-irradiated ethylene propylene diene monomer (EPDM)/high styrene-butadiene rubber (HSBR) blends were investigated with special reference to the effects of blend ratio. Among the blends, the one with 80/20 EPDM/HSBR has been found to exhibit the highest tensile, hardness, thermal, and abrasion properties. The effect of γ-irradiation dose on the mechanical properties namely tensile strength and elongation at break was investigated. The effect of silane coupling agent on the mentioned properties of the EPDM/HSBR blend was studied. The results showed that the mechanical and the thermal properties of the γ-irradiated EPDM/HSBR blend improved with the addition of the silane coupling agent due to the increase in the cross-linking density. The inclusion of both the 30 phr fumed silica and N, N- m-phenylenedimaleimide coagent in the 80/20 EPDM/HSBR nanocomposite irradiated to 150 kGy leads to a synergistic effect. Thermogravimetric analysis was carried out to analyze the thermal stability of the nanocomposites. The mechanical properties have been interpreted in terms of the morphology of the blends as attested by scanning electron microscope.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
DongJu Lee ◽  
Sung Ho Song

Epoxidized palm oil (EPO) is environmentally friendly, biodegradable, and a relatively less costly processing aid. In this study, we investigated the suitability of EPO in place of aromatic processing oils in styrene butadiene rubber. The curing properties, mechanical properties, abrasion resistance, and heat buildup properties of rubber composites with EPO were compared with those of the standard with aromatic oils. The rubber composites with EPO showed enhanced mechanical properties including modulus, tensile strength, and elongation at break. This is ascribed to the improved dispersion of fillers in the rubber matrix and interaction between the filler and the polymer. Furthermore, EPO in the rubber matrix showed remarkable abrasion resistance, rebound resilience, and heat buildup at low loadings. EPO in a rubber composite presents feasibility as a renewable raw material that can serve as an alternative to petrochemical oils in various applications.


2002 ◽  
Vol 75 (4) ◽  
pp. 725-737 ◽  
Author(s):  
Alberto Scurati ◽  
Ica Manas-Zloczower ◽  
Donald L. Feke

Abstract The effect of surface treatment on silica agglomerate dispersibility was investigated. Precipitated silica powders were treated with a commercially available coupling agent Bis-(triethoxysilylpropyl)-tetrasulphane (TESPT) in a blender. Spherical agglomerates of known density were prepared and dispersed in styrene butadiene rubber (SBR) under controlled flow conditions. The erosion kinetics was monitored by measuring the reduction in size of parent agglomerate with time. Silica dispersibility was greatly enhanced upon surface treatment. The coupling agent used in surface treatment is known to reduce filler—filler interactions and therefore affects the intrinsic cohesivity of the powder. However powder surface treatment can also induce changes in agglomerate morphology and filler-liquid interactions. The work presented in this paper evidences such changes.


Sign in / Sign up

Export Citation Format

Share Document