Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children

2007 ◽  
Vol 42 (4) ◽  
pp. 380-385 ◽  
Author(s):  
Terry V. Grissell ◽  
Anne B. Chang ◽  
Peter G. Gibson
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michal Korostynski ◽  
Dzesika Hoinkis ◽  
Marcin Piechota ◽  
Slawomir Golda ◽  
Joanna Pera ◽  
...  

AbstractAltered cytokine synthesis thought to contribute to the pathophysiology of post-stroke depression (PSD). Toll-like receptor 4 (TLR4) is a master regulator of innate immunity. The aim of this study was to explore the putative association between TLR4-mediated cytokine synthesis and subsequent symptoms of PSD. In total, 262 patients with ischemic stroke and without a history of PSD were included. Depressive symptoms were assessed using the Patient Health Questionnaire-9 in 170 patients on Day 8 and in 146 at 3 months after stroke. Blood samples taken on Day 3 after stroke were stimulated ex vivo with lipopolysaccharide (LPS). Ex vivo synthesized cytokines (TNFα, IP-10, IL-1β, IL-6, IL-8, IL-10, and IL-12p70) and circulating cytokines (TNFα, IL-6, sIL-6R, and IL-1ra) were measured using the enzyme-linked immunoassay or cytometric method. RNA sequencing was used to determine the gene expression profile of LPS-induced cytokines and chemokines. LPS-induced cytokine synthesis and the gene expression of TLR4-dependent cytokines and chemokines did not differ between patients with and without greater depressive symptoms. The plasma level of IL-6, but not TNFα, sIL-6R, and IL-1ra, was higher in patients who developed depressive symptoms at 3 months after stroke (median: 4.7 vs 3.4 pg/mL, P = 0.06). Plasma IL-6 predicted the severity of depressive symptoms at 3 months after stroke (β = 0.42, P = 0.03). In conclusion, TLR4-dependent cytokine synthesis was not associated with greater post-stroke depressive symptoms in this study. Circulating IL-6 might be associated with depressive symptoms occurring at 3 months after stroke.


2013 ◽  
Vol 288 (35) ◽  
pp. 25362-25374 ◽  
Author(s):  
Melanie R. Shakespear ◽  
Daniel M. Hohenhaus ◽  
Greg M. Kelly ◽  
Nabilah A. Kamal ◽  
Praveer Gupta ◽  
...  

Toxicology ◽  
2004 ◽  
Vol 204 (2-3) ◽  
pp. 229-239 ◽  
Author(s):  
Stacy L. Casbohm ◽  
James V. Rogers ◽  
Mindy K. Stonerock ◽  
Jamie L. Martin ◽  
Karen M. Ricketts-Kaminsky ◽  
...  

2005 ◽  
Vol 73 (1) ◽  
pp. 532-545 ◽  
Author(s):  
Jill R. Schurr ◽  
Erana Young ◽  
Pat Byrne ◽  
Chad Steele ◽  
Judd E. Shellito ◽  
...  

ABSTRACT Toll-like receptor 4 (TLR4) has been identified as a receptor for lipopolysaccharide. However, the precise role of TLR4 in regulating gene expression in response to an infection caused by gram-negative bacteria has not been fully elucidated. The role of TLR4 signaling in coordinating gene expression was assessed by gene expression profiling in lung tissue in a mouse model of experimental pneumonia with a low-dose infection of Klebsiella pneumoniae. We analyzed four mouse strains: C57BL/6 mice, which are resistant to bacterial dissemination; 129/SvJ mice, which are susceptible; C3H/HeJ mice, which are susceptible and have defective TLR4 signaling; and their respective control strain, C3H/HeN (intermediate resistance). At 4 h after infection, C57BL/6 and C3H/HeN mice demonstrated the greatest number of genes, with 67 shared induced genes which were TLR4 dependent and highly associated with the resistance phenotype. These genes included cytokine and chemokine genes required for neutrophil activation or recruitment, growth factor receptors, MyD88 (a critical adaptor protein for TLR signaling), and adhesion molecules. TLR4 signaling accounted for over 74% of the gene expression in the C3H background. These data suggest that early TLR4 signaling controls the vast majority of gene expression in the lung in response to an infection caused by gram-negative bacteria and that this subsequent gene expression determines survival of the host.


1993 ◽  
Vol 73 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Stephen I. Lentz ◽  
Michael S. Poosch ◽  
Kei Hirayama ◽  
Gregory Kapatos ◽  
Michael J. Bannon

Sign in / Sign up

Export Citation Format

Share Document