scholarly journals Mass spectrometry based analysis of human plasma-derived factor X revealed novel post-translational modifications

2015 ◽  
Vol 24 (10) ◽  
pp. 1640-1648 ◽  
Author(s):  
Guillaume Chevreux ◽  
Nolwenn Tilly ◽  
Valegh Faid ◽  
Nicolas Bihoreau
2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


1979 ◽  
Author(s):  
P Friberger ◽  
C Lenne

A recently published method for Factor X (FX) assay (1) utilizing Russel's Viper Venom (RVV) and a chromogenic substrate has been further investigated by testing a large number of parameters. This method has been considered as a suitable method for monitoring coumarol treatment (Bergström et al).The conditions for the activation of FX by purified preparations of the RVV have been studied as well as the conditions for FXa determination with a new chromogenic substrate Bz-Ile-Glu(γ-piperidyl)-Gly-Arg-pNA (S-2337). Both purified factors and normal plasma have been used. The effect of plasma inhibitors as well as the selectivity of the method has been studied.The reproducibility and stability of the different reagents and standards have been studied and found to be good.The amount of FXa activity obtained from normal human plasma has been titrated with FXa inhibitors of known purity.1) Aurell L. et al, Thromb. Res., 11, 595 (1977)2) Bergström et al, Thromb. Res., 12, 531 (1978)


1979 ◽  
Author(s):  
E. T. Yin ◽  
W. J. Salsgiver ◽  
O. Tangen

Circumstantial evidence suggested that normal human plasma contained a substance regulating the neutralization of F.Xa by F.Xa inhibitor(XaI), (Yin et.al.,Adv.Exper. Med. & Biol., 52 : 239, 1975, Plenum Press, N.Y.).This plasma component has now been isolated and partially purified in our laboratory, and tentatively designated as “Anti-XaI”.In experiments employing purified components, when Anti-XaI was incubated at 37°C with F.Xa, Xal and heparin for two minutes at pH7.5, the amount of F.Xa inhibited was inversely proportional to the Anti-XaI concentration. But, when the F.Xa was replaced by thrombin in the incubation mixture, the neutralization of thrombin clotting activity was undisturbed.Anti-XaI was found to be neither PF3 nor PF4.These and other data strongly suggest that the “Antithrombin III pathway” is more complex than currently believed to be. In circulating blood an equilibrium state must exist between Anti-XaI and XaI.Under certain conditions when the Anti-XaI activity is predominant the rate of F.Xa neutralization bv XaI then becomes slower than the activation of prothrombin to thrombin by F.Xa.


2018 ◽  
Author(s):  
Zhiwu An ◽  
Fuzhou Gong ◽  
Yan Fu

We have developed PTMiner, a first software tool for automated, confident filtering, localization and annotation of protein post-translational modifications identified by open (mass-tolerant) search of large tandem mass spectrometry datasets. The performance of the software was validated on carefully designed simulation data. <br>


2019 ◽  
Vol 15 (7) ◽  
pp. 710-715
Author(s):  
S.T. Narenderan ◽  
Basuvan Babu ◽  
T. Gokul ◽  
Subramania Nainar Meyyanathan

Objective: The aim of the present work is to achieve a novel highly sensitive chromatographic method for the simultaneous determination of hepatitis C agents, sofosbuvir and velpatasvir from human plasma using ritonavir as an internal standard. Methods: Chromatographic separation was achieved using Hypersil C18 column (50mm x 4.6mm, 3μm) with an isocratic elution mode using the mobile phase composition 10 mM ammonium formate buffer (pH 5.0): acetonitrile (20:80 v/v) pumped at a flow rate of 0.5 ml/min. The detection was carried out by tandem mass spectrometry using Multiple Reaction Monitoring (MRM) positive Electrospray Ionization (ESI) with proton adducts at m/z 530.10 > 243.10, 883.40 > 114.0 and 721.25 > 197.0. Results: The method validated as per USFDA guidelines with respect to linearity, accuracy, and precision was found to be acceptable over the concentration range of 0.2–2000 ng/ml and 5-2000 ng/ml for sofosbuvir and velpatasvir respectively and the method was found to be highly sensitive and selective. Conclusion: The developed tandem mass spectrometric method is robust and can be applied for the monitoring of plasma levels of the analyzed drug in preclinical and clinical pharmacokinetic studies.


2018 ◽  
Vol 15 (1) ◽  
pp. 17-23
Author(s):  
Vulli Srinandan ◽  
Krishnaveni Nagappan ◽  
Sonam Patel ◽  
Karthik Yamjala ◽  
Gowramma Byran ◽  
...  

Background: Pantoprazole (PTZ) and Levosulpiride (LS) were proven as effective agents for the treatment of Gastro-Esophageal Reflux Disease (GERD). It is a complex motor disorder that results in regurgitation of the gastric contents into the lower esophagus with consequent symptoms such as heart burn, retrosternal pain, dysphagia and belching. Methods: A rapid, sensitive, selective and specific liquid chromatography- electro spray ionization tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous quantification of Pantoprazole (PTZ) and Levosulpiride (LS) in spiked Human Plasma. The method utilized SPE as sample preparation technique and the analysis was carried out on a HPLC system utilizing electro spray ionization as interface and triple quadrupole mass analyzer for quantification in MRM possitive mode. Iloperidone was used as internal standard (IS). Chromatographic separation was performed on a Phenomenex C-18 Column (4.6 mm x 50 mm, 5µ) with an isocratic elution mode utilizing a mobile phase composition of Solution containing a mixture of 70 volumes of acetonitrile: 30 volumes of methanol and 10mM ammonium formate (pH 4.0) at the ratio of 80:20 % v/v. The flow rate was maintained at 0.3 mL/min. Results: PTZ, LS and IS were detected and quantified with proton adducts at m/z 383.37→200.00, m/z 341.42→112.15 and 426.48→261.00 respectively. The linearity and range was established by fortifying blank plasma samples in the concentration range of 3.5-2000 ng/mL for PTZ and 3.0-2400 ng/mL for LS. The correlation coefficient (r2) was found to be ≥ 0.993 for PTZ and (r2) ≥ 0.990 for LS. The lower limit of quantification for PTZ was 3.5 ng/mL and LS was 3.0 ng/mL. The intra and inter day precision and accuracy for PTZ and LS were within the limits fulfilling the international acceptance criteria. PTZ and LS were found to be stable throughout three freeze-thaw cycles, bench top and short term stability studies. Conclusion: The proposed validated LC-MS/MS method offers a sensitive quantification of PTZ and LS in spiked human plasma and can be utilized for the quantification of PTZ and LS in real-time samples.


Sign in / Sign up

Export Citation Format

Share Document