High population densities of Macrolophus pygmaeus on tomato plants can cause economic fruit damage: interaction with Pepino mosaic virus ?

2015 ◽  
Vol 72 (7) ◽  
pp. 1350-1358 ◽  
Author(s):  
Rob Moerkens ◽  
Els Berckmoes ◽  
Veerle Van Damme ◽  
Nelia Ortega-Parra ◽  
Inge Hanssen ◽  
...  
2020 ◽  
Vol 18 (4) ◽  
pp. e10SC05
Author(s):  
Ivana Stankovic ◽  
Ana Vucurovic ◽  
Katarina Zecevic ◽  
Branka Petrovic ◽  
Danijela Ristic ◽  
...  

Aim of study: To report the occurrence of Pepino mosaic virus (PepMV) on tomato in Serbia and to genetically characterize Serbian PepMV isolates.Area of study: Tomato samples showing virus-like symptoms were collected in the Bogojevce locality (Jablanica District, Serbia).Material and methods: Collected tomato samples were assayed by DAS-ELISA using antisera against eight economically important or quarantine tomato viruses. Three selected isolates of naturally infected tomato plants were mechanically transmitted to tomato ‘Novosadski jabučar’ seedlings. For confirmation of PepMV infection, RT-PCR was performed using specific primers PepMV TGB F/PepMV UTR R. Maximum-likelihood phylogenetic tree was constructed with 47 complete CP gene sequences of PepMV to determine the genetic relationship of Serbian PepMV isolates with those from other parts of the world.Main results: The results of DAS-ELISA indicated the presence of PepMV in all tested samples. Mechanically inoculated ‘Novosadski jabučar’ seedlings expressed yellow spots and light and dark green patches, bubbling, and curled leaves. All tested tomato plants were RT-PCR positive for the presence of PepMV. The CP sequence analysis revealed that the Serbian PepMV isolates were completely identical among themselves and shared the highest nucleotide identity of 95.1% (99.2% aa identity) with isolate from Spain (FJ263341). Phylogenetic analysis showed clustering of the Serbian PepMV isolates into CH2 strain, but they formed separate subgroup within CH2 strain.Research highlights: This is the first data of the presence of PepMV in protected tomato production in Serbia. Considering increased incidence and rapid spread in Europe, the presence of PepMV on tomato could therefore represent serious threat to this valuable crop in Serbia.


2013 ◽  
Vol 19 (1) ◽  
pp. 22-27
Author(s):  
Marija Žižytė ◽  
Donatas Šneideris ◽  
Irena Zitikaitė ◽  
Laima Urbanavičienė ◽  
Juozas Staniulis

Abstract Two isolates of Pepino mosaic virus (PepMV) from tomato plants grown in different commercial greenhouses in Lithuania were characterized by coat protein (CP) gene sequence analysis. Comparison with other PepMV isolates from the GenBank database showed that both Lithuanian PepMV isolates share 78.3% nucleotide identity and belong to two distinct EU and CH2 genotypes of PepMV. This is the first report on characterization of two PepMV genotypes detected in Lithuania.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1292-1292 ◽  
Author(s):  
C. Jordá ◽  
A. Lázaro Pérez ◽  
P. Martínez-Culebras ◽  
P. Abad ◽  
A. Lacasa ◽  
...  

At the beginning of 2000, a damaging disease developed on protected tomato (Lycopersicon esculentum) crops grown in polyethylene greenhouses in different regions of Spain. Production losses were estimated at 15 to 80%. The tomato plants showed a variety of symptoms. The most common symptoms were leaf distortion, chlorosis, and mosaic. Some plants showed a dark green mosaic and bubbling of the leaf surface. Green striations were also observed on the stem and sepals. Most of the diseased plants had discolored fruits. Symptoms decreased as environmental temperature increased. The involvement of Pepino mosaic virus (PepMV) was suspected. To identify the etiological agent, ≈500 symptomatic tomato plants were collected from several locations in Alicante, Murcia, Almeria and the Canary Islands. Flexuous viral particles 510 nm long were observed by transmission electron microscopy, suggesting the presence of a potexvirus in the tissue extracts analyzed. All samples were tested by ELISA (enzyme-linked immunosorbent assay), using polyclonal antibodies to Narcissus mosaic virus (Adgen, Auchincriuve, Scotland), a virus serologically related to PepMV, and two antisera specific to PepMV (Adgen, Scotland and DMSZ, Braunschweig, Germany). PepMV was detected in 35% of the samples. Like PepMV, the virus infected (as confirmed by ELISA) greenhouse-grown Datura stramonium, Nicandra physalodes, Nicotiana benthamiana, N. clevelandii, Solanum tuberosum, and Vigna sinensis and did not infect Capsicum anuum, Cucumis sativus, Chenopodium amaranticolor, C. quinoa, Petunia × hybrida, Phaseolus vulgaris, Physalis floridana, N. glutinosa, N. rustica, or N. tabacum. The virus did infect Gomphrena globosa, which normally is not infected by PepMV. The first report of PepMV was on pepino (Solanum muricatum) in Peru in 1974 (1), but this virus has been recently reported in the Netherlands, England, Germany, and France on protected tomato crops (2). To our knowledge, this is the first report of PepMV in Spain, including the Canary Islands. References: (1) R. A. C. Jones et al. Ann. Appl. Biol. 94:61, 1980. (2) European and Mediterranean Plant Protection Organisation (EPPO). Alert List Viruses. On-line publication/2000/003.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 879 ◽  
Author(s):  
Chen Klap ◽  
Neta Luria ◽  
Elisheva Smith ◽  
Lior Hadad ◽  
Elena Bakelman ◽  
...  

The tobamovirus tomato brown rugose fruit virus (ToBRFV), a major threat to tomato production worldwide, has recently been documented in mixed infections with the potexvirus pepino mosaic virus (PepMV) CH2 strain in traded tomatoes in Israel. A study of greenhouse tomato plants in Israel revealed severe new viral disease symptoms including open unripe fruits and yellow patched leaves. PepMV was only detected in mixed infections with ToBRFV in all 104 tested sites, using serological and molecular analyses. Six PepMV isolates were identified, all had predicted amino acids characteristic of CH2 mild strains excluding an isoleucine at amino acid position 995 of the replicase. High-throughput sequencing of viral RNA extracted from four selected symptomatic plants showed solely the ToBRFV and PepMV, with total aligned read ratios of 40.61% and 11.73%, respectively, indicating prevalence of the viruses. Analyses of interactions between the co-infecting viruses by sequential and mixed viral inoculations of tomato plants, at various temperatures, showed a prominent increase in PepMV titers in ToBRFV pre-inoculated plants and in mixed-infected plants at 18–25 °C, compared to PepMV-single inoculations, as analyzed by Western blot and quantitative RT-PCR tests. These results suggest that Israeli mild PepMV isolate infections, preceded by ToBRFV, could induce symptoms characteristic of PepMV aggressive strains.


2021 ◽  
Vol 9 (4) ◽  
pp. 689
Author(s):  
Laura Elvira González ◽  
Rosa Peiró ◽  
Luis Rubio ◽  
Luis Galipienso

Southern tomato virus (STV) is a persistent virus that was, at the beginning, associated with some tomato fruit disorders. Subsequent studies showed that the virus did not induce apparent symptoms in single infections. Accordingly, the reported symptoms could be induced by the interaction of STV with other viruses, which frequently infect tomato. Here, we studied the effect of STV in co- and triple-infections with Cucumber mosaic virus (CMV) and Pepino mosaic virus (PepMV). Our results showed complex interactions among these viruses. Co-infections leaded to a synergism between STV and CMV or PepMV: STV increased CMV titer and plant symptoms at early infection stages, whereas PepMV only exacerbated the plant symptoms. CMV and PepMV co-infection showed an antagonistic interaction with a strong decrease of CMV titer and a modification of the plant symptoms with respect to the single infections. However, the presence of STV in a triple-infection abolished this antagonism, restoring the CMV titer and plant symptoms. The siRNAs analysis showed a total of 78 miRNAs, with 47 corresponding to novel miRNAs in tomato, which were expressed differentially in the plants that were infected with these viruses with respect to the control mock-inoculated plants. These miRNAs were involved in the regulation of important functions and their number and expression level varied, depending on the virus combination. The number of vsiRNAs in STV single-infected tomato plants was very small, but STV vsiRNAs increased with the presence of CMV and PepMV. Additionally, the rates of CMV and PepMV vsiRNAs varied depending on the virus combination. The frequencies of vsiRNAs in the viral genomes were not uniform, but they were not influenced by other viruses.


Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 78-78 ◽  
Author(s):  
K. E. Efthimiou ◽  
A. P. Gatsios ◽  
K. C. Aretakis ◽  
L. C. Papayiannis ◽  
N. I. Katis

Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae) is a mechanically transmitted virus that has emerged as a significant problem of greenhouse tomato crops in Europe and around the world during the past 10 years (1). In spring of 2010, mosaic symptoms were observed on leaves of cherry tomato (Lycopersicon esculentum var. cerasiforme) greenhouse crops (hybrids Shiren, Tomito, and Rubino top) in the areas of Drymos and Vonitsa, located at Aitoloakarnania Prefecture, in Greece. A total of 63 tomato samples (55 from symptomatic and 8 from asymptomatic plants) were collected from 11 greenhouses where disease incidence ranged from 10 to 20%. All samples were tested by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies from BIOREBA, AG (Reinach, Switzerland) for the presence of PepMV, Cucumber mosaic virus (CMV), and Tomato mosaic virus (ToMV). Leaf tissue from PepMV-, CMV-, and ToMV-infected samples and virus-free tomato plants were included in all tests as positive and negative controls, respectively. Results showed that 53 symptomatic samples collected from all greenhouses were infected with PepMV and two were co-infected with PepMV and CMV. Total RNA was extracted from all infected plants with a commercially available kit (Qiagen, Hilden, Germany) and amplified by conventional and real-time reverse transcription (RT)-PCR, using previously reported protocols (2). Positive and negative controls were also included in each assay. The 200-bp amplified PCR fragments of Triple Gene Block 3 (TGB3) obtained from five infected samples were purified and both strands were sequenced. Sequencing data were analyzed, deposited in the GenBank, and compared with other reported sequences. In addition, leaf tissue from five samples infected with only PepMV was used for mechanical inoculation of four plants of Nicotiana glutinosa, N. benthamiana, and tomato (L. esculentum FA 179 hybrid) plants. As negative controls, two plants from each species were used. Sequencing analysis showed that all five PepMV sequences were identical (GenBank Accession Nos. FR686904 to FR686908) and possessed 100% identity PepMVstrain CH2 (DQ000985). Inoculation results showed that the virus was successfully transmitted to N. benthamiana and tomato plants which developed mosaic symptoms, and tested positive by DAS-ELISA and RT-PCR. N. glutinosa plants did not develop any symptoms and were found to be free of PepMV when tested by DAS-ELISA and RT-PCR. To our knowledge, this is the first report of PepMV in Greece. Further studies on the disease prevalence and incidence and its economic impact on tomato production are required. PepMV is currently under quarantine status in the EU and therefore new protective measures should be recommended to prevent the spread of PepMV to other regions of Greece. References: (1) I. M. Hanssen and B. P. H. J. Thomma. Mol. Plant Pathol. 11:179, 2010. (2) K. S. Ling et al. J. Virol. Methods 144:65, 2007.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1292-1292 ◽  
Author(s):  
C. Jordá ◽  
A. Lázaro Pérez ◽  
P. V. Martínez Culebras ◽  
A. Lacasa

Pepino mosaic virus (PepMV) is a potexvirus recently identified as the causal agent of a new disease occurring in protected tomato (Lycopersicon esculentum Mill.) crops in the Netherlands (2). PepMV has been subsequently identified in England, Germany, Italy, Morocco, Portugal, and Spain. The new disease has become a serious problem for tomato production in Europe. Most infected tomato plants expressed leaf distortion, chlorosis, and yellow mosaic. Other plants expressed mosaic and bubbling of the leaf surface. Tomato fruits showing severe discoloration and mosaic were observed in protected tomato crops. Symptoms attenuated in tomato plants as the ambient temperature increased. At present, only Solanum muricatum Ait. (Peruvian pepino) and L. esculentum are affected by PepMV.To determine possible reservoir hosts for this virus, 70 samples from Amaranthus sp., A. viridis (L.) Britton et al., Chenopodium murale L., Convolvulus arvensis L., Malva parviflora L., Nicotiana glauca Grah., Polypogon monspeliensis (L.) Desf., Senecio vulgaris L., Sisybrium sp., Solanum nigrum L., and Sonchus oleraceus L. were analyzed. The plants were collected around greenhouses affected by PepMV from different regions in Spain (Murcia and Canary Islands). The samples were analyzed for PepMV by double-antibody sandwich enzyme-linked immunosorbent assay with a commercial antiserum (DSMZ AS-0554, Biologische Bundesantstal, Braunschweig, Germany). Only Amaranthus sp., M. parviflora, N. glauca, Solanum nigrum, and Sonchus oleraceus tested postive. The presence of PepMV in these weed species was confirmed by electron microscopy and reverse transcription-polymerase chain reaction using degenerate primers for potexvirus (1). All the hosts analyzed were asymptomatic. However, symptoms were reproduced by mechanically inoculating tomato plants with sap from naturally infected weeds. To our knowledge, this is the first report of natural infection of weeds by PepMV. References: (1) A. Gibbs et al. J. Virol. Methods 74:67, 1998. (2) R. A. A. Van der Vlugt et al. Plant Dis. 84:103, 2000.


2021 ◽  
Author(s):  
Diana Leibman ◽  
Nelia Ortega‐Parra ◽  
Dalia Wolf ◽  
Meital Shterkman ◽  
Inge Hanssen ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
pp. 513-522
Author(s):  
Jean-Claude N'ZI ◽  
Lassina FONDIO ◽  
Mako Francois De Paul N’GBESSO ◽  
Andé Hortense DJIDJI ◽  
Christophe KOUAME

Thirty accessions of tomato including twenty eight introduced accessions from The World Vegetable Center-AVRDC and as controls, two commercial varieties Mongal and Calinago, were assessed for agronomic performances at the Experimentation and Production Station of Angud dou of the National Agronomic Research Centre (CNRA) located in the South of Cote d Ivoire. The trial was arranged in a randomized block with three replications. The following parameters were determined at vegetative development stage: plant height at flowering stage, susceptibility of accessions to diseases, day to 50% flowering and day of first harvest, production duration, fruit length, fruit diameter, total number of fruits, number of fruits per plant, potential yield, net yield and fruit damage rate. Results showed that the commercial variety Mongal, with a potential yield of 15.9 and a net yield of 13.1 t ha-1, was the most productive. All the introduced accessions from AVRDC recorded the lowest potential yields from 2.2 to 9.7 t ha-1, and net yields from 1.7 to 8.6 t ha-1. In addition, accessions WVCT8, FMTT847 and WVCT13 were severely infested by bacterial wilt. The reduction of the net yield of tomato accessions resulted in the high fruit damage rates. For the future tomato breeding work, it would be appropriate to introduce into the trials bacterial diseases tolerant varieties. Moreover, some studies could be undertaken to determine the nature of the bacteria involved in the plant wilting and to find out the causal agent of the tomato plants burning at the fructification stage reducing the harvest duration.


2020 ◽  
Vol 110 (1) ◽  
pp. 49-57 ◽  
Author(s):  
C. Alcaide ◽  
M. P. Rabadán ◽  
M. Juárez ◽  
P. Gómez

Mixed viral infections are common in plants, and the evolutionary dynamics of viral populations may differ depending on whether the infection is caused by single or multiple viral strains. However, comparative studies of single and mixed infections using viral populations in comparable agricultural and geographical locations are lacking. Here, we monitored the occurrence of pepino mosaic virus (PepMV) in tomato crops in two major tomato-producing areas in Murcia (southeastern Spain), supporting evidence showing that PepMV disease-affected plants had single infections of the Chilean 2 (CH2) strain in one area and the other area exhibited long-term (13 years) coexistence of the CH2 and European (EU) strains. We hypothesized that circulating strains of PepMV might be modulating the differentiation between them and shaping the evolutionary dynamics of PepMV populations. Our phylogenetic analysis of 106 CH2 isolates randomly selected from both areas showed a remarkable divergence between the CH2 isolates, with increased nucleotide variability in the geographical area where both strains cocirculate. Furthermore, the potential virus–virus interaction was studied further by constructing six full-length infectious CH2 clones from both areas, and assessing their viral fitness in the presence and absence of an EU-type isolate. All CH2 clones showed decreased fitness in mixed infections and although complete genome sequencing indicated a nucleotide divergence of those CH2 clones by area, the magnitude of the fitness response was irrespective of the CH2 origin. Overall, these results suggest that although agroecological cropping practices may be particularly important for explaining the evolutionary dynamics of PepMV in tomato crops, the cocirculation of both strains may have implications on the genetic variability of PepMV populations.


Sign in / Sign up

Export Citation Format

Share Document