Activation energy values from the temperature dependence of silicon PN junction reverse current and its origin

2010 ◽  
Vol 207 (5) ◽  
pp. 1252-1256 ◽  
Author(s):  
Vasile V. N. Obreja ◽  
Alexandru C. Obreja
2014 ◽  
Vol 1693 ◽  
Author(s):  
R. Nipoti ◽  
M. Puzzanghera ◽  
F. Moscatelli

ABSTRACTTwo n+-i-p 6H-SiC diode families with P+ ion implanted emitter have been processed with all identical steps except the post implantation annealing: 1300°C/20min without C-cap has been compared with 1950°C/10min with C-cap. The analysis of the temperature dependence of the reverse current at low voltage (-100V) in the temperature range 27-290°C shows the dominance of a periphery current which is due to generation centers with number and activation energy dependent on the post implantation annealing process. The analysis of the temperature dependence of the forward current shows two ideality factor n region, one with n = 1.9/2 at low voltage and the other one with 1 < n < 2 without passing through 1 for increasing voltages. For both the diode families the current with n = 1.9/2 is a periphery current due to recombination centers with a thermal activation energy near the 6H-SiC mid gap. In the forward current region of 1 < n < 2, the two diode families show different ideality factor values which could be attributed to a different post implantation annealing defect activation.


1993 ◽  
Vol 16 (1) ◽  
pp. 55-64 ◽  
Author(s):  
N. Georgoulas ◽  
L. Magafas ◽  
A. Thanailakis

In the present work a study of the electrical properties of heterojunctions between rf sputtered amorphous silicon carbide (a-SiC) thin films and n-type crystalline silicon (c-Si) substrates is reported. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics, as well as the temperature dependence of the current of a-SiC/c-Si(n) heterojunctions were measured. The I-V characteristics of a-SiC/ c-Si(n) heterojunctions exhibit poor rectification properties, with a high reverse current, at higher temperatures (T > 250K), whereas good rectification properties are obtained at lower temperatures (T < 250K). It was found that the a-SiC/c-Si(n) heterojunctions are isotype, suggesting that-the conductivity of a-SiC is n-type. The temperature dependence of the current (from 185K to 320K) showed that the majority carriers of c-Si(n) (i.e. electrons) are transported from c-Si(n) to a-SiC mainly by the thermionic emission mechanism, or by the drift-diffusion mechanism. From C-V measurements of a-SiC/c-Si(n) heterojunctions the electron affinity of a-SiC was found to be X1= 4.20 ± 0.04 eV. Finally, the a-SiC/ c-Si(n) isotype heterojunctions are expected to be interesting devices as infrared


2017 ◽  
Vol 898 ◽  
pp. 679-683
Author(s):  
Cheng Chen ◽  
Jin Liang Hu ◽  
Lang Xiang Zhong ◽  
Bo Zhang

The diffusion behavior of Ce-Al alloy melt at three temperatures of 943K, 953K and 963K was investigated by sliding shear method. The inter-diffusion constants D show Arrhenius-type temperature dependence in the investigated regimes. Compared with the previous results achieved in Ce-Cu melt, liquid Ce-Al displays a much slower diffusion behavior and rather higher activation energy ED, which was caused by the strong interaction between Ce and Al.


2019 ◽  
Vol 85 (5) ◽  
pp. 60-68
Author(s):  
Yuliay Pogorenko ◽  
Anatoliy Omel’chuk ◽  
Roman Pshenichny ◽  
Anton Nagornyi

In the system RbF–PbF2–SnF2 are formed solid solutions of the heterovalent substitution RbxPb0,86‑xSn1,14F4-x (0 < x ≤ 0,2) with structure of β–PbSnF4. At x > 0,2 on the X-ray diffractograms, in addition to the basic structure, additional peaks are recorded that do not correspond to the reflexes of the individual fluorides and can indicate the formation of a mixture of solid solutions of different composition. For single-phase solid solutions, the calculated parameters of the crystal lattice are satisfactorily described by the Vegard rule. The introduction of ions of Rb+ into the initial structure leads to an increase in the parameter a of the elementary cell from 5.967 for x = 0 to 5.970 for x = 0.20. The replacement of a part of leads ions to rubium ions an increase in electrical conductivity compared with β–PbSnF4 and Pb0.86Sn1.14F4. Insignificant substitution (up to 3.0 mol%) of ions Pb2+ at Rb+ at T<500 K per order of magnitude reduces the conductivity of the samples obtained, while the nature of its temperature dependence is similar to the temperature dependence of the conductivity of the sample β-PbSnF4. By replacing 5 mol. % of ions with Pb2+ on Rb+, the fluoride ion conductivity at T> 450 K is higher than the conductivity of the initial sample Pb0,86Sn1,14F4 and at temperatures below 450 K by an order of magnitude smaller. With further increase in the content of RbF the electrical conductivity of the samples increases throughout the temperature range, reaching the maximum values at x≥0.15 (σ573 = 0.34–0.41 S/cm, Ea = 0.16 eV and σ373 = (5.34–8.16)•10-2 S/cm, Ea = 0.48–0.51 eV, respectively). In the general case, the replacement of a part of the ions of Pb2+ with Rb+ to an increase in the electrical conductivity of the samples throughout the temperature range. The activation energy of conductivity with an increase in the content of RbF in the low-temperature region in the general case increases, and at temperatures above 400 K is inversely proportional decreasing. The nature of the dependence of the activation energy on the concentration of the heterovalent substituent and its value indicate that the conductivity of the samples obtained increases with an increase in the vacancies of fluoride ions in the structure of the solid solutions.


2021 ◽  
Vol 88 (6) ◽  
pp. 967-969
Author(s):  
N. N. Niftiyev

The spectral distribution of the photoconductivity and the temperature dependence of the photocurrent of MnIn2S4 single crystals are investigated. The intrinsic, impurity photoconductivity and a maximum at an energy of 2.69 eV, which is associated with the intracenter transition of Mn2+ ions (6A1→4A1), are revealed in the photoconductivity spectrum. The region of the wavelengths of 600–1000 nm appears with an excess of manganese in the crystals and is caused by a donor defect. At temperatures of 80—145 K, the increase in the photocurrent is associated with the thermal depletion of the adhesion levels. The activation energy of the adhesion levels is determined.


2020 ◽  
Vol 10 (1) ◽  
pp. 65-78
Author(s):  
Bratati Das ◽  
Ashis Bhattacharjee

Background: Melting of a pure crystalline material is generally treated thermodynamically which disregards the dynamic aspects of the melting process. According to the kinetic phenomenon, any process should be characterized by activation energy and preexponential factor where these kinetic parameters are derivable from the temperature dependence of the process rate. Study on such dependence in case of melting of a pure crystalline solid gives rise to a challenge as such melting occurs at a particular temperature only. The temperature region of melting of pure crystalline solid cannot be extended beyond this temperature making it difficult to explore the temperature dependence of the melting rate and consequently the derivation of the related kinetic parameters. Objective: The present study aims to explore the mechanism of the melting process of maleic anhydride in the framework of phase transition models. Taking this process as just another first-order phase transition, occurring through the formation of nuclei of new phase and their growth, particular focus is on the nucleation and growth models. Methods: Non-isothermal thermogravimetry, as well as differential scanning calorimetry studies, has been performed. Using isoconversional kinetic analysis, temperature dependence of the activation energy of melting has been obtained. Nucleation and growth models have been utilized to obtain the theoretical temperature dependencies for the activation energy of melting and these dependencies are then compared with the experimentally estimated ones. Conclusion: The thermogravimetry study indicates that melting is followed by concomitant evaporation, whereas the differential scanning calorimetry study shows that the two processes appear in two different temperature regions, and these differences observed may be due to the applied experimental conditions. From the statistical analysis, the growth model seems more suitable than the nucleation model for the interpretation of the melting mechanism of the maleic anhydride crystals.


2009 ◽  
Vol 96 (3) ◽  
pp. 166a
Author(s):  
Shaweta Gupta ◽  
Anthony Auerbach

Sign in / Sign up

Export Citation Format

Share Document