On the Anomaly of the Electrical Resistivity in Manganese Ferrite Single Crystals Near the Curie Point

1964 ◽  
Vol 4 (3) ◽  
pp. K125-K128 ◽  
Author(s):  
M. Rosenberg ◽  
P. Nicolau ◽  
I. Bunget
Physica B+C ◽  
1985 ◽  
Vol 130 (1-3) ◽  
pp. 102-105 ◽  
Author(s):  
P.G. Thérond ◽  
A. Blaise ◽  
J.M. Fournier ◽  
J. Chiapusio ◽  
J.P. Charvillat ◽  
...  

2003 ◽  
Vol 81 (1-2) ◽  
pp. 395-400 ◽  
Author(s):  
D Iliescu ◽  
I Baker ◽  
X Li

Both constant load creep and recrystallization are investigated using single crystals of 70–170 ppb sulfuric-acid-doped and -undoped ice. Both sets of crystals exhibited strains in excess of 200% under tensile creep. The undoped specimens reached these strains roughly twice as fast as the doped specimens. After large local strains were imparted to cuboidal single crystals using equal channel angular extrusion at –2°C and subsequent annealing at the same temperature, recrystallization occurred. It was found that a higher concentration of H2SO4 retarded both recrystallization and the subsequent grain-boundary migration. Direct current electrical resistivity measurements performed on polycrystalline, sulfuric-acid-doped (3 ppm) ice at –10°C showed a much lower resistivity in the grain boundaries than in the lattice. PACS No.: 81.90


2000 ◽  
Vol 281-282 ◽  
pp. 926-927 ◽  
Author(s):  
T Akazawa ◽  
H Ikeda ◽  
N Ozawa ◽  
H Kouno ◽  
R Yoshizaki

2019 ◽  
Vol 5 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Svetlana P. Kobeleva ◽  
Ilya M. Anfimov ◽  
Vladimir S. Berdnikov ◽  
Tatyana V. Kritskaya

Electrical resistivity distribution maps have been constructed for single crystal silicon wafers cut out of different parts of Czochralski grown ingots. The general inhomogeneity of the wafers has proven to be relatively high, the resistivity scatter reaching 1–3 %. Two electrical resistivity distribution inhomogeneity types have been revealed: azimuthal and radial. Experiments have been carried out for crystal growth from transparent simulating fluids with hydrodynamic and thermophysical parameters close to those for Czochralski growth of silicon single crystals. We show that a possible cause of azimuthal electrical resistivity distribution inhomogeneity is the swirl-like structure of the melt under the crystallization front (CF), while a possible cause of radial electrical resistivity distribution inhomogeneity is the CF curvature. In a specific range of the Grashof, Marangoni and Reynolds numbers which depend on the ratio of melt height and growing crystal radius, a system of well-developed radially oriented swirls may emerge under the rotating CF. In the absence of such swirls the melt is displaced from under the crystallization front in a homogeneous manner to form thermal and concentration boundary layers which are homogeneous in azimuthal direction but have clear radial inhomogeneity. Once swirls emerge the melt is displaced from the center to the periphery, and simultaneous fluid motion in azimuthal direction occurs. The overall melt motion becomes helical as a result. The number of swirls (two to ten) agrees with the number of azimuthally directed electrical resistivity distribution inhomogeneities observed in the experiments. Comparison of numerical simulation results in a wide range of Prandtl numbers with the experimental data suggests that the phenomena observed in transparent fluids are universal and can be used for theoretical interpretation of imperfections in silicon single crystals.


2000 ◽  
Vol 19 (1) ◽  
pp. 21-22
Author(s):  
A. R. E. Prinsloo

The spin-density-wave (SDW) effects in Cr-Si and Cr-Ga alloy single crystals were investigated by means of thermal expansion, electrical resistivity and ultrasonic wave velocity measurements. The complete temperature-concentration and temperature-pressure magnetic phase diagrams of Cr-Ga were constructed.


2019 ◽  
Vol 33 (04) ◽  
pp. 1950039
Author(s):  
G. Ya. Khadzhai ◽  
N. R. Vovk ◽  
R. V. Vovk ◽  
I. L. Goulatis ◽  
O. V. Dobrovolskiy

The effect of high hydrostatic pressure on the relaxation of the electrical resistivity at room temperature of oxygen-nonstoichiometric [Formula: see text] (Re = Y, Ho) single crystals is investigated. The application of hydrostatic pressure has been revealed to significantly intensify the process of diffusion coalescence in the oxygen subsystem. At the same time, the intensity of the redistribution of labile oxygen is significantly changed when yttrium is replaced by holmium.


Sign in / Sign up

Export Citation Format

Share Document