An assessment of radiative impacts of CO 2 on baroclinic instability using idealized life cycles

Author(s):  
Mahshid Kaviani ◽  
Farhang Ahmadi‐Givi ◽  
Ali R. Mohebalhojeh ◽  
Daniel Yazgi
2007 ◽  
Vol 64 (2) ◽  
pp. 479-496 ◽  
Author(s):  
Matthew A. H. Wittman ◽  
Andrew J. Charlton ◽  
Lorenzo M. Polvani

Abstract Using a hierarchy of models, and observations, the effect of vertical shear in the lower stratosphere on baroclinic instability in the tropospheric midlatitude jet is examined. It is found that increasing stratospheric shear increases the phase speed of growing baroclinic waves, increases the growth rate of modes with low synoptic wavenumbers, and decreases the growth rate of modes with higher wavenumbers. The meridional structure of the linear modes, and their acceleration of the zonal mean jet, changes with increasing stratospheric shear, but in a way that apparently contradicts the observed stratosphere–troposphere northern annular mode (NAM) connection. This contradiction is resolved at finite amplitude. In nonlinear life cycle experiments it is found that increasing stratospheric shear, without changing the jet structure in the troposphere, produces a transition from anticyclonic (LC1) to cyclonic (LC2) behavior at wavenumber 7. All life cycles with wavenumbers lower than 7 are LC1, and all with wavenumber greater than 7 are LC2. For the LC1 life cycles, the effect of increasing stratospheric shear is to increase the poleward displacement of the zonal mean jet by the eddies, which is consistent with the observed stratosphere–troposphere NAM connection. Finally, it is found that the connection between high stratospheric shear and high-tropospheric NAM is present by NCEP–NCAR reanalysis data.


2005 ◽  
Vol 131 (608) ◽  
pp. 1425-1440 ◽  
Author(s):  
J. Methven ◽  
B. J. Hoskins ◽  
E. Heifetz ◽  
C. H. Bishop

2007 ◽  
Vol 64 (7) ◽  
pp. 2502-2520 ◽  
Author(s):  
Riwal Plougonven ◽  
Chris Snyder

Abstract The spontaneous generation of inertia–gravity waves in idealized life cycles of baroclinic instability is investigated using the Weather Research and Forecasting Model. Two substantially different life cycles of baroclinic instability are obtained by varying the initial zonal jet. The wave generation depends strongly on the details of the baroclinic wave’s development. In the life cycle dominated by cyclonic behavior, the most conspicuous gravity waves are excited by the upper-level jet and are broadly consistent with previous simulations of O’Sullivan and Dunkerton. In the life cycle that is dominated by anticyclonic behavior, the most conspicuous gravity waves even in the stratosphere are excited by the surface fronts, although the fronts are no stronger than in the cyclonic life cycle. The anticyclonic life cycle also reveals waves in the lower stratosphere above the upper-level trough of the baroclinic wave; these waves have not been previously identified in idealized simulations. The sensitivities of the different waves to both resolution and dissipation are discussed.


2019 ◽  
Vol 12 (1) ◽  
pp. 77-87
Author(s):  
György Kovács ◽  
Rabab Benotsmane ◽  
László Dudás

Recent tendencies – such as the life-cycles of products are shorter while consumers require more complex and more unique final products – poses many challenges to the production. The industrial sector is going through a paradigm shift. The traditional centrally controlled production processes will be replaced by decentralized control, which is built on the self-regulating ability of intelligent machines, products and workpieces that communicate with each other continuously. This new paradigm known as Industry 4.0. This conception is the introduction of digital network-linked intelligent systems, in which machines and products will communicate to one another in order to establish smart factories in which self-regulating production will be established. In this article, at first the essence, main goals and basic elements of Industry 4.0 conception is described. After it the autonomous systems are introduced which are based on multi agent systems. These systems include the collaborating robots via artificial intelligence which is an essential element of Industry 4.0.


1994 ◽  
Vol 6 (3) ◽  
pp. 133-142 ◽  
Author(s):  
Steve King

Re-creating the social, economic and demographic life-cycles of ordinary people is one way in which historians might engage with the complex continuities and changes which underlay the development of early modern communities. Little, however, has been written on the ways in which historians might deploy computers, rather than card indexes, to the task of identifying such life cycles from the jumble of the sources generated by local and national administration. This article suggests that multiple-source linkage is central to historical and demographic analysis, and reviews, in broad outline, some of the procedures adopted in a study which aims at large scale life cycle reconstruction.


2020 ◽  
Vol 48 (1) ◽  
pp. 62-72
Author(s):  
E. A. Ershova

Сalanoid copepods of the genus Pseudocalanus play an important role in the plankton communities of the Arctic and boreal seas, often dominating in numbers and constituting a significant proportion of the biomass of zooplankton. Despite their high presence and significance in the shelf plankton communities, species-specific studies of the biology of these are significantly hampered by extremely small morphological differences between them, especially at the juvenile stages, at which they are virtually indistinguishable. In this paper, we describe a new, routine and low-cost molecular method for identifying all Pseudocalanus species found in the Atlantic sector of the Arctic: the Arctic P. acuspes, P. minutus and the boreal P. moultoni and P. elongatus, and apply it to describe the relative distribution of these species in four locations of the Arctic and sub-Arctic. With this method, species-specific polymerase chain reaction (ssPCR), mass identification of individuals of any developmental stage, including nauplii, is possible. This method can serve as an excellent tool for studying the species-specific biology of this group, describing their life cycles, as well as monitoring changes in Arctic marine ecosystems under the influence of changing climate.


2013 ◽  
Vol 13 (4) ◽  
pp. 369-384

Many Public Aquaria have been designed and constructed all over the world during the last three decades. The serial arrangement of relatively small, rectangular, concrete tanks has been replaced by fewer large, irregularly shaped tanks, replicating habitats. The “taxonomic concept” of displaying specimens in the old aquaria has now been succeeded by the more ecological, “community concept” type of display. At the same time most of the “old aquaria” have been renovated. Aquarium missions have also been broadened nowadays including research, conservation and education. Aquaria are ideal places for research on husbandry, life cycles, reproduction, behavior, autoecology and fish pathology. Collaboration with Universities and Research Centers increases the research potential in scientific disciplines such as ecology, genetics, physiology and biochemistry. Collaboration also provides mutual benefits in both infrastructure and personnel: The research background in aquaria also forms a sound platform to materialize conservation projects, focusing either on the ex-situ conservation of animals in the aquaria or on environmental protection of surrounding areas and reintroduction of endangered species. In addition to formal educational opportunities, non formal education to visitors, schools and undergraduates seems to become a major mission of aquaria. Aquarium tank displays, preserved biological material, film projections, seminars / lectures and book magazine publications enhance environmental awareness, encouraging people to adopt Environmentally Responsible Behavior. All these missions are feasible because most public aquaria are making a good profit mainly due to their high popularity. There are also benefits for the community in the area; aquaria have enlivened declining water front areas and increased the income of tourist resorts mainly by “stretching out” the tourist season. In the present work the objectives of a public aquarium are reviewed and the main infrastructure subsystems and operational procedures are described; Know how on aquarium systems can also be applied in research laboratories of academic institutions if live organisms have to be kept for experimentation. Aquarium missions on research, conservation and education are discussed.


Sign in / Sign up

Export Citation Format

Share Document