Titanium Incorporation into Zr‐Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug‐Resistant Pathogens

Small ◽  
2020 ◽  
Vol 16 (7) ◽  
pp. 1906240 ◽  
Author(s):  
Mian Chen ◽  
Zhou Long ◽  
Ruihua Dong ◽  
Le Wang ◽  
Jiangjiang Zhang ◽  
...  
2019 ◽  
Vol 55 (93) ◽  
pp. 13959-13962 ◽  
Author(s):  
Yajun Zhang ◽  
Hanjiao Chen ◽  
Yi Pan ◽  
Xiaoliang Zeng ◽  
Xiaofang Jiang ◽  
...  

For the first time, UiO-66(Ce) was endowed with greatly improved redox photocatalytic activity via Ti incorporation, based on the formation of oxygen vacancies.


2014 ◽  
Vol 138 ◽  
pp. 114-121 ◽  
Author(s):  
Xinyi Lu ◽  
Junwei Ye ◽  
Dekui Zhang ◽  
Ruixia Xie ◽  
Raji Feyisa Bogale ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244673
Author(s):  
Julalak C. Ontong ◽  
Nwabor F. Ozioma ◽  
Supayang P. Voravuthikunchai ◽  
Sarunyou Chusri

Multidrug resistant Enterobacterales have become a serious global health problem, with extended hospital stay and increased mortality. Antibiotic monotherapy has been reported ineffective against most drug resistant bacteria including Klebsiella pneumoniae, thus encouraging the use of multidrug therapies as an alternative antibacterial strategy. The present works assessed the antibacterial activity of colistin against K. pneumoniae isolates. Resistant isolates were tested against 16 conventional antibiotics alone and in combination with colistin. The results revealed that all colistin resistant isolates demonstrated multidrug resistance against the tested antibiotics except amikacin. At sub-inhibitory concentrations, combinations of colistin with amikacin, or fosfomycin showed synergism against 72.72% (8 of 11 isolates). Colistin with either of gentamicin, meropenem, cefoperazone, cefotaxime, ceftazidime, moxifloxacin, minocycline, or piperacillin exhibited synergism against 81.82% (9 of 11 isolates). Combinations of colistin with either of tobramycin or ciprofloxacin showed synergism against 45.45% (5 in 11 isolates), while combinations of colistin with imipenem or ceftolozane and tazobactam displayed 36.36% (4 of 11 isolates) and 63.64% (7 of 11 isolates) synergism. In addition, combinations of colistin with levofloxacin was synergistic against 90.91% (10 of 11 isolates). The results revealed that combinations of colistin with other antibiotics could effectively inhibit colistin resistant isolates of K. pneumoniae, and thus could be further explore for the treatment of multidrug resistant pathogens.


2019 ◽  
Vol 20 (14) ◽  
pp. 3603 ◽  
Author(s):  
Lisa Elias ◽  
Rafael Taengua ◽  
Belén Frígols ◽  
Beatriz Salesa ◽  
Ángel Serrano-Aroca

Background: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. Methods: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. Results: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. Conclusions: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.


Sign in / Sign up

Export Citation Format

Share Document