Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response

2013 ◽  
Vol 65 (9-10) ◽  
pp. 814-821 ◽  
Author(s):  
Lesli Ortega-Arroyo ◽  
Eduardo San Martin-Martinez ◽  
Miguel A. Aguilar-Mendez ◽  
Alfredo Cruz-Orea ◽  
Isaias Hernandez-Pérez ◽  
...  
2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Saravana Periaswamy Sivagnanam ◽  
Adane Tilahun Getachew ◽  
Jae Hyung Choi ◽  
Yong Beom Park ◽  
Hee Chul Woo ◽  
...  

AbstractThe aim of this work was to acquire even and sphere-shaped silver nanoparticles (AgNPs) using statistical design of experiment. AgNPs were produced by green synthesis method using deoiled


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


2020 ◽  
Vol 234 (3) ◽  
pp. 531-540
Author(s):  
Saba Ghamipoor ◽  
Faeze Fayyazi ◽  
Saeed Bahadorikhalili

AbstractIn this work, green synthesis of silver nanoparticles is described by phytochemical reducing silver nitrate aqueous solution using Anthemis nobilis. For this purpose, Anthemis nobilis extract was used for the synthesis of silver nanoparticles as both surfactant and reducing agent. Green synthesis method is a good alternative to physical and chemical methods, since it is fast, simple, environmentally-friendly and economic. The produced nanoparticles are identified using FE-SEM, EDX, and FT-IR and Uv/Vis techniques. Formation of silver nanoparticles is verified in 430–420 nm range. Reduction of silver ions by hydroxyl functional group is also confirmed by FT-IR device. EDX device confirms the presence of a peak for Ag element without any impurity peak. Silver nanoparticles are identified by FE-SEM device and found to have average size between 17 and 42 nm. Also, the antibacterial activity of the synthesized nanoparticles is compared with that of staphyloccusaureus and pseudomonasa aeruginosa and the maximum inhibitory activity against the bacteria is obtained using 1 mM nitrate solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Duhita G. Sant ◽  
Tejal R. Gujarathi ◽  
Shrikant R. Harne ◽  
Sougata Ghosh ◽  
Rohini Kitture ◽  
...  

Development of an ecofriendly, reliable, and rapid process for synthesis of nanoparticles using biological system is an important bulge in nanotechnology. Antioxidant potential and medicinal value of Adiantum philippense L. fascinated us to utilize it for biosynthesis of gold and silver nanoparticles (AuNPs and AgNPs). The current paper reports utility of aqueous extract of A. philippense L. fronds for the green synthesis of AuNPs and AgNPs. Effect of various parameters on synthesis of nanoparticles was monitored by UV-Vis spectrometry. Optimum conditions for AuNPs synthesis were 1 : 1 proportion of original extract at pH 11 and 5 mM tetrachloroauric acid, whereas optimum conditions for AgNPs synthesis were 1 : 1 proportion of original extract at pH 12 and 9 mM silver nitrate. Characterization of nanoparticles was done by TEM, SAED, XRD, EDS, FTIR, and DLS analyses. The results revealed that AuNPs and AgNPs were anisotropic. Monocrystalline AuNPs and polycrystalline AgNPs measured 10 to 18 nm in size. EDS and XRD analyses confirmed the presence of elemental gold and silver. FTIR analysis revealed a possible binding of extract to AuNPs through –NH2 group and to AgNPs through C=C group. These nanoparticles stabilized by a biological capping agent could further be utilized for biomedical applications.


2016 ◽  
Vol 565 ◽  
pp. 872-881 ◽  
Author(s):  
Rogelio Carrillo-González ◽  
Miriam Araceli Martínez-Gómez ◽  
Ma. del Carmen A. González-Chávez ◽  
José Carlos Mendoza Hernández

Sign in / Sign up

Export Citation Format

Share Document