Development of Starch Nanoparticle From Mango Kernel in Comparison With Cereal, Tuber, and Legume Starch Nanoparticles: Characterization and Cytotoxicity

2022 ◽  
pp. 2100252
Author(s):  
Vikash Nain ◽  
Maninder Kaur ◽  
Kawaljit Singh Sandhu ◽  
Rahul Thory ◽  
Archana Sinhmar
Author(s):  
Marlizia de Oliveira ◽  
Liszt Madruga ◽  
Bruna de Lima ◽  
Marcos Villetti ◽  
Men de Souza Filho ◽  
...  

Mango industry processing disposes 40-60% of this fruit as residues, such as peels and kernels. The exploration of bioproducts from these industrial rejects can reduce environmental impact besides of producing high value-added materials. In this scenario, carboxymethyl starch nanoparticles were produced from mango (Mangifera indica L.) kernel starch. These nanoparticles were then decorated with thermoresponsive chains of the amino terminated poly(N-isopropylacrylamide) (PNIPAM‑NH2), with the intention of evaluating their applicability in the biomedical area. Elemental analysis, Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy confirmed successful grafting of PNIPAM-NH2 onto the carboxymethyl starch backbone. Scanning electron microscopy (SEM) images and dynamic light scattering (DLS) data showed sizes of 100 and 112 nm in the dry state and of 744 and 598 nm in the hydrated state, when the grafting degree (GD) was of 6 and 14.3%, respectively. The degree of swelling was of 41,100 and 15,100% for GD of 6 and 14.3% respectively, suggesting that the nanogels are suitable for drug incorporation. The toxicity of the nanogels to human adipose-derived stem cells (ADSCs) and red blood cells (RBCs) was evaluated by lactate dehydrogenase (LDH), alamarBlue and hemolysis assays. Both nanogels were non-cytotoxic and non-hemolytic, suggesting the suitability of these biomaterials for cell- and blood-contacting applications.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


LWT ◽  
2016 ◽  
Vol 69 ◽  
pp. 251-257 ◽  
Author(s):  
Suisui Jiang ◽  
Chengzhen Liu ◽  
Xiaojin Wang ◽  
Liu Xiong ◽  
Qingjie Sun

2021 ◽  
Vol 138 (18) ◽  
pp. 50008
Author(s):  
Fabiane Cerqueira Almeida ◽  
Carolina Oliveira Souza ◽  
Biane Oliveira Philadelpho ◽  
Paulo Vitor Lemos ◽  
Lucas Guimarães Cardoso ◽  
...  

2021 ◽  
pp. 108201322199125
Author(s):  
Margaret A Olorunfemi ◽  
Olugbenga O Awolu ◽  
Victor N Enujiugha

Gluten-free flours that are nutritionally balanced with appropriate functional characteristics were developed by supplementation of native and modified acha flours with protein, dietary fiber and antioxidants-rich mango kernel and soy cakes flours. Acha flour was subjected to chemical and enzymatic modifications. The proximate, mineral compositions, bioactive and antinutrients properties of the composite flours were evaluated. The water content of the composite flours with native and chemically modified acha flour was between 7.62 and 9.30%, while that of enzymatic acha flour was between 10.12 and 10.79%. However, samples made with 20 and 30% incorporated mango kernel flour had around 13 and 19% increase in the protein content respectively, others including sample with enzymatically modified acha flour had lower protein content. On the other hand, all samples with enzymatically modified acha flour had between 83 and 100% increase in fibre content. The Na/K ratio of all the samples were less than one, as nutritionally required. Samples with enzymatically modified acha flour had best total flavonoid (0.03–0.77 mgGAE/g), total phenol (2.35–11.99 mgTAE/g) and DPPH radical scavenging activities (58.29–94.02%) contents. In addition, samples with enzymatically modified acha flour had the least antinutritional values. Although all the samples had values that were significantly (p ≥ 0.05) different, the samples had significant protein, dietary fiber, minerals and antioxidants contents, while the antinutritional contents were well lower than the standard.


Author(s):  
Silvia Voci ◽  
Agnese Gagliardi ◽  
Maria Cristina Salvatici ◽  
Massimo Fresta ◽  
Donato Cosco

Sign in / Sign up

Export Citation Format

Share Document