Concrete dam deformation prediction model for health monitoring based on extreme learning machine

2017 ◽  
Vol 24 (10) ◽  
pp. e1997 ◽  
Author(s):  
Fei Kang ◽  
Jia Liu ◽  
Junjie Li ◽  
Shouju Li
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xudong Qu ◽  
Jie Yang ◽  
Meng Chang

Deformation is a comprehensive reflection of the structural state of a concrete dam, and research on prediction models for concrete dam deformation provides the basis for safety monitoring and early warning strategies. This paper focuses on practical problems such as multicollinearity among factors; the subjectivity of factor selection; robustness, externality, generalization, and integrity deficiencies; and the unsoundness of evaluation systems for prediction models. Based on rough set (RS) theory and a long short-term memory (LSTM) network, single-point and multipoint concrete dam deformation prediction models for health monitoring based on RS-LSTM are studied. Moreover, a new prediction model evaluation system is proposed, and the model accuracy, robustness, externality, and generalization are defined as quantitative evaluation indexes. An engineering project shows that the concrete dam deformation prediction models based on RS-LSTM can quantitatively obtain the representative factors that affect dam deformation and the importance of each factor relative to the effect. The accuracy evaluation index (AVI), robustness evaluation index (RVI), externality evaluation index (EVI), and generalization evaluation index (GVI) of the model are superior to the evaluation indexes of existing shallow neural network models and statistical models according to the new evaluation system, which can estimate the comprehensive performance of prediction models. The prediction model for concrete dam deformation based on RS-LSTM optimizes the factors that influence the model, quantitatively determines the importance of each factor, and provides high-performance, synchronous, and dynamic predictions for concrete dam behaviours; therefore, the model has strong engineering practicality.


2021 ◽  
Vol 13 (9) ◽  
pp. 4896
Author(s):  
Jianguo Zhou ◽  
Dongfeng Chen

Effective carbon pricing policies have become an effective tool for many countries to encourage emission reduction. An accurate carbon price prediction model is helpful for the implementation of energy conservation and emission reduction policies and the decision-making of governments and investors. However, it is difficult for a single prediction model to achieve high prediction accuracy because of the high complexity of the carbon price series. Many studies have proved the nonlinear characteristics of carbon trading prices, but there are very few studies on the chaotic nature of carbon price series. As a consequence, this paper proposes an innovative hybrid model for carbon price prediction. A decomposition-reconstruction-prediction-integration scheme is designed to predict carbon prices. Firstly, several intrinsic mode functions (IMFs) and one residue were obtained from the raw data decomposed by ICEEMDAN. Next, the decomposed subsection is reconstructed into a new sequence according to the calculation results by the Lempel-Ziv complexity algorithm. Then, considering the chaotic characteristics of sequence, the input variables of the models are determined through the phase space reconstruction (PSR) algorithm combined with the partial autocorrelation function (PACF). Finally, the Sparrow search algorithm (SSA) is introduced to optimize the extreme learning machine (ELM) model, which is applied in the carbon price prediction for the purpose of verifying the validity of the proposed combination model, which is applied to the pilots of Hubei, Beijing, and Guangdong. The empirical results show that the combination model outperformed the 13 other models in predicting accuracy, speed, and stability. The decomposition-reconstruction-prediction-integration strategy is a method for predicting the carbon price efficiently.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1328
Author(s):  
Jianguo Zhou ◽  
Shiguo Wang

Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xue-cun Yang ◽  
Xiao-ru Yan ◽  
Chun-feng Song

For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM) is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM) and kernel function extreme learning machine prediction model (KELM). The results prove that mean square error (MSE) for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.


2013 ◽  
Vol 351-352 ◽  
pp. 1306-1311 ◽  
Author(s):  
Jing Yang Liu ◽  
He Zhi Liu

Arch dam has gradually evolved as one of dam type as main large-scale hydraulic project, dam deformation prediction is an important part of dam safety monitoring, and it is difficult to forecast because of the complicated nonlinear characteristics of the monitoring data. Support Vector Machine (SVM) could solve the small sample, nonlinear high dimension problem due to the excellent generalization ability, and hence it has been widely used in the forecast of arch dam deformation. However, the forecast results considerably depend on the choice of SVM model parameters. In this paper, Particle Swarm Optimization (PSO), which has the characteristic of fast global optimization, was applied to optimize the parameters in SVM, and then the dam deformation prediction model based on PSO-SVM could be established. The model is applied to a certain arch dam foundation prediction. The accuracy of this employed approach was examined by comparing it with multiple regression method. In a word, the experimental results indicate that the proposed method based on PSO-SVM can be used in arch dam deformation prediction.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hong Yang ◽  
Lipeng Gao ◽  
Guohui Li

Aiming at the chaotic characteristics of underwater acoustic signal, a prediction model of grey wolf-optimized kernel extreme learning machine (OKELM) based on MVMD is proposed in this paper for short-term prediction of underwater acoustic signals. To solve the problem of K value selection in variational mode decomposition, a new K value selection method MVMD is proposed from the perspective of mutual information, which avoids the blindness of variational mode decomposition (VMD) in the preset modal number. Based on the prediction model of kernel extreme learning machine (KELM), this paper uses grey wolf optimization (GWO) algorithm to optimize and select its regularization parameters and kernel parameters and proposes an optimized kernel extreme learning machine OKELM. To further improve the prediction performance of the model, combined with MVMD, an underwater acoustic signal prediction model based on MVMD-OKELM is established. MVMD-OKELM prediction model is applied to Mackey–Glass chaotic time series prediction and underwater acoustic signal prediction and is compared with ARIMA, EMD-OKELM, and other prediction models. The experimental results show that the proposed MVMD-OKELM prediction model has a higher prediction accuracy and can be effectively applied to the prediction of underwater acoustic signal series.


2014 ◽  
Vol 513-517 ◽  
pp. 4076-4079 ◽  
Author(s):  
Liang Hui Li ◽  
Sheng Jun Peng ◽  
Zhen Xiang Jiang ◽  
Bo Wen Wei

By using unscented kalman filter (UKF) theory and introducing adaptive factor into BP neural network, a new prediction model of concrete dam deformation was proposed. Example shows that this model can improve the convergence speed of BP neural network, and the calculation precision of this model meets engineering requirements. Meanwhile, this model can be applied in the safety monitoring of other hydraulic engineering structure.


Sign in / Sign up

Export Citation Format

Share Document