Experimental realisation of the real‐time controlled smart magnetorheological elastomer seismic isolation system with shake table

2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Xiaoyu Gu ◽  
Jianchun Li ◽  
Yancheng Li
Author(s):  
Yancheng Li ◽  
Jianchun Li

This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for seismic protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A highly-adjustable MRE base isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MRE layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive base isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. Experimental results show that the prototypical MRE base isolator provides amazing increase of lateral stiffness up to 1630%. Such range of increase of the controllable stiffness of the base isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls. To facilitate the structural control development using the adaptive MRE base isolator, an analytical model was developed to stimulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator, including the observed strain stiffening effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Ivan Banović ◽  
Jure Radnić ◽  
Nikola Grgić

Using a shake-table, the effects of several stone pebble layer parameters (the layer thickness, the fraction of pebbles, the pebble compaction, the pebble moisture, the vertical contact stress below the foundation, and the effect of repeated excitations) on layer aseismic efficiency were investigated. For each considered parameter, a model of a rigid building on an aseismic layer was exposed to four different accelerograms, with three levels of peak ground acceleration (PGA), while all other layer parameters were kept constant. For each test, the characteristic displacements and accelerations were measured. Based on the test results, the main conclusions regarding the effect of the considered parameters on the effectiveness of the adopted aseismic layer are given.


2011 ◽  
Vol 117-119 ◽  
pp. 364-368
Author(s):  
Nan Ge ◽  
Hai Bin Chen ◽  
You Po Su ◽  
Xing Guo Wang

The modified equations for PC-Newmark method and OS (operator-splitting) method were derived, which could be applied to the numerical solution for the non-linear equation encountered in real time on-line test. The structure with FPS seismic isolation system was divided into three substructures, namely the FPS system, the experiment substructure and the computation substructure. The explicit algorithm is applied to the first two substructures and the implicit algorithm to the third one in order to loosen the stability limitation. The numerical solution for a 7 DOF structural model has proven the alleviation for stability requirement.


2021 ◽  
Vol 11 (23) ◽  
pp. 11409
Author(s):  
Wael A. Altabey ◽  
Mohammad Noori ◽  
Zele Li ◽  
Ying Zhao ◽  
Seyed Bahram Beheshti Aval ◽  
...  

Magnetorheological elastomeric (MRE) material is a novel type of material that can adaptively change the rheological property rapidly, continuously, and reversibly when subjected to real-time external magnetic field. These new type of MRE materials can be developed by employing various schemes, for instance by mixing carbon nanotubes or acetone contents during the curing process which produces functionalized multiwall carbon nanotubes (MWCNTs). In order to study the mechanical and magnetic effects of this material, for potential application in seismic isolation, in this paper, different mathematical models of magnetorheological elastomers are analyzed and modified based on the reported studies on traditional magnetorheological elastomer. In this regard, a new feature identification method, via utilizing curvelet analysis, is proposed to make a multi-scale constituent analysis and subsequently a comparison between magnetorheological elastomer nanocomposite and traditional magnetorheological elastomers in a microscopic level. Furthermore, by using this “smart” material as the laminated core structure of an adaptive base isolation system, magnetic circuit analysis is numerically conducted for both complete and incomplete designs. Magnetic distribution of different laminated magnetorheological layers is discussed when the isolator is under compressive preloading and lateral shear loading. For a proof of concept study, a scaled building structure is established with the proposed isolation device. The dynamic performance of this isolated structure is analyzed by using a newly developed reaching law sliding mode control and Radial Basis Function (RBF) adaptive sliding mode control schemes. Transmissibility of the structural system is evaluated to assess its adaptability, controllability and nonlinearity. As the findings in this study show, it is promising that the structure can achieve its optimal and adaptive performance by designing an isolator with this adaptive material whose magnetic and mechanical properties are functionally enhanced as compared with traditional isolation devices. The adaptive control algorithm presented in this research can transiently suppress and protect the structure against non-stationary disturbances in the real time.


Author(s):  
K. Takahashi ◽  
K. Inoue ◽  
M. Morishita ◽  
T. Fujita

Seismic isolation technology plays an important role in the area of architect engineering, especially in Japan where earthquake comes so often. This technology also makes the nuclear power plant rationalized. The horizontal base isolation with laminated rubber bearings has already been proven its effectiveness. These days, seismic isolation technology is expected to mitigate even the vertical load, which affects the structural design of primary components. Seismic isolation system has possibility to improve the economical situation for the nuclear power plant. From these points of view, a research project has been proceeded to realize practical three dimensional seismic isolation systems from 2000 to 2005 under the sponsorship of the Ministry of Economy, Trade and Industry of the Japanese government. The isolation system is developed for the supposed “Fast Breeder Reactor (abbreviated FBR)” of the next generation. Two types of seismic isolation systems are developed in the R&D project. One is a three-dimensional base isolation for a reactor building (abbreviated 3D SIS) and the other is a vertical isolation for main components with horizontal base isolation of the reactor building (abbreviated V. +2D SIS). At first step of the R&D, requirements and targets of development for the seismic isolation system were identified. Seismic condition for R&D was discussed based on the real seismic response. Vertical natural frequency and damping ratio required to the system were introduced from the response to the seismic movement. As for 3D SIS, several system concepts were proposed to satisfy the requirements and targets. Through discussions and tests on performance, reliability, applicability, maintainability, “Rolling seal type air spring system with hydraulic anti-rocking devices” was decided to be developed. Verification shaking tests with the 1/7 scale model of the system and analysis for applicability to the real plant are conducted. The result shows that the system is able to support the reactor building, to suppress the rocking motion and to mitigate the vertical seismic load. As for V.+2D SIS, coned disk spring device was selected at the beginning of R&D. Performance tests of the elements, which include common deck movement, were conducted and the system applicability to the plant is confirmed. Verification tests were conducted with 1/8 scale model of the system and the result proves the applicability to the real plant.


2021 ◽  
Vol 164 ◽  
pp. 107924
Author(s):  
Bonaventura Tagliafierro ◽  
Rosario Montuori ◽  
Maria Gabriella Castellano

2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Yancheng Li ◽  
Jianchun Li

This paper presents a recent research advance on the development of a novel adaptive seismic isolation system to be used in seismic protection of civil structures. A highly adjustable laminated magnetorheological elastomer (MRE) base isolator was developed and experimental results show that the prototypical MRE base isolator provides increase in lateral stiffness up to 1630%. To facilitate the structural control development using such adaptive MRE base isolator, an analytical model was developed to simulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Sign in / Sign up

Export Citation Format

Share Document