scholarly journals Role of Lipid Rafts in Hematopoietic Stem Cells Homing, Mobilization, Hibernation, and Differentiation

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 630 ◽  
Author(s):  
Munther Alomari ◽  
Dana Almohazey ◽  
Sarah Ameen Almofty ◽  
Firdos Alam Khan ◽  
Mohammad Al hamad ◽  
...  

Hematopoietic stem cells (HSCs) are multipotent, self-renewing cells that can differentiate into myeloid or lymphoid cells. The mobilization and differentiation processes are affected by the external environment, such as extracellular matrix and soluble molecules in the niche, where the lipid rafts (LRs) of the HSCs act as the receptors and control platforms for these effectors. LRs are membrane microdomains that are enriched in cholesterol, sphingolipid, and proteins. They are involved in diverse cellular processes including morphogenesis, cytokinesis, signaling, endocytic events, and response to the environment. They are also involved in different types of diseases, such as cancer, Alzheimer’s, and prion disease. LR clustering and disruption contribute directly to the differentiation, homing, hibernation, or mobilization of HSCs. Thus, characterization of LR integrity may provide a promising approach to controlling the fate of stem cells for clinical applications. In this review, we show the critical role of LR modification (clustering, disruption, protein incorporation, and signal responding) in deciding the fate of HSCs, under the effect of soluble cytokines such as stem cell factor (SCF), transforming growth factor- β (TGF-β), hematopoietic-specific phospholipase Cβ2 (PLC-β2), and granulocyte colony-stimulating factor (G-CSF).

2007 ◽  
Vol 204 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Göran Karlsson ◽  
Ulrika Blank ◽  
Jennifer L. Moody ◽  
Mats Ehinger ◽  
Sofie Singbrant ◽  
...  

Members of the transforming growth factor β (TGF-β) superfamily of growth factors have been shown to regulate the in vitro proliferation and maintenance of hematopoietic stem cells (HSCs). Working at a common level of convergence for all TGF-β superfamily signals, Smad4 is key in orchestrating these effects. The role of Smad4 in HSC function has remained elusive because of the early embryonic lethality of the conventional knockout. We clarify its role by using an inducible model of Smad4 deletion coupled with transplantation experiments. Remarkably, systemic induction of Smad4 deletion through activation of MxCre was incompatible with survival 4 wk after induction because of anemia and histopathological changes in the colonic mucosa. Isolation of Smad4 deletion to the hematopoietic system via several transplantation approaches demonstrated a role for Smad4 in the maintenance of HSC self-renewal and reconstituting capacity, leaving homing potential, viability, and differentiation intact. Furthermore, the observed down-regulation of notch1 and c-myc in Smad4−/− primitive cells places Smad4 within a network of genes involved in the regulation HSC renewal.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3758-3779 ◽  
Author(s):  
N Uchida ◽  
HL Aguila ◽  
WH Fleming ◽  
L Jerabek ◽  
IL Weissman

Abstract Hematopoietic stem cells (HSCs) are believed to play a critical role in the sustained repopulation of all blood cells after bone marrow transplantation (BMT). However, understanding the role of HSCs versus other hematopoietic cells in the quantitative reconstitution of various blood cell types has awaited methods to isolate HSCs. A candidate population of mouse HSCs, Thy-1.1lo Lin-Sca-1+ cells, was isolated several years ago and, recently, this population has been shown to be the only population of BM cells that contains HSCs in C57BL/Ka-Thy-1.1 mice. As few as 100 of these cells can radioprotect 95% to 100% of irradiated mice, resulting long-term multilineage reconstitution. In this study, we examined the reconstitution potential of irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ BM cells. Donor-derived peripheral blood (PB) white blood cells were detected as early as day 9 or 10 when 100 to 1,000 Thy-1.1lo Lin-Sca-1+ cells were used, with minor dose-dependent differences. The reappearance of platelets by day 14 and thereafter was also seen at all HSC doses (100 to 1,000 cells), with a slight dose-dependence. All studied HSC doses also allowed RBC levels to recover, although at the 100 cell dose a delay in hematocrit recovery was observed at day 14. When irradiated mice were transplanted with 500 Thy-1.1lo Lin-Sca-1+ cells compared with 1 x 10(6) BM cells (the equivalent amount of cells that contain 500 Thy-1.1lo Lin-Sca-1+ cells as well as progenitor and mature cells), very little difference in the kinetics of recovery of PB, white blood cells, platelets, and hematocrit was observed. Surprisingly, even when 200 Thy1.1lo Lin-Sca- 1+ cells were mixed with 4 x 10(5) Sca-1- BM cells in a competitive repopulation assay, most of the early (days 11 and 14) PB myeloid cells were derived from the HSC genotype, indicating the superiority of the Thy-1.1lo Lin-Sca-1+ cells over Sca-1- cells even in the early phases of myeloid reconstitution. Within the Thy-1.1lo Lin-Sca-1+ population, the Rhodamine 123 (Rh123)hi subset dominates in PB myeloid reconstitution at 10 to 14 days, only to be overtaken by the Rh123lo subset at 3 weeks and thereafter. These findings indicate that HSCs can account for the early phase of hematopoietic recovery, as well as sustained hematopoiesis, and raise questions about the role of non-HSC BM populations in the setting of BMT.


1999 ◽  
Vol 189 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
Mickie Bhatia ◽  
Dominique Bonnet ◽  
Dongmei Wu ◽  
Barbara Murdoch ◽  
Jeff Wrana ◽  
...  

The identification of molecules that regulate human hematopoietic stem cells has focused mainly on cytokines, of which very few are known to act directly on stem cells. Recent studies in lower organisms and the mouse have suggested that bone morphogenetic proteins (BMPs) may play a critical role in the specification of hematopoietic tissue from the mesodermal germ layer. Here we report that BMPs regulate the proliferation and differentiation of highly purified primitive human hematopoietic cells from adult and neonatal sources. Populations of rare CD34+CD38−Lin− stem cells were isolated from human hematopoietic tissue and were found to express the BMP type I receptors activin-like kinase (ALK)-3 and ALK-6, and their downstream transducers SMAD-1, -4, and -5. Treatment of isolated stem cell populations with soluble BMP-2, -4, and -7 induced dose-dependent changes in proliferation, clonogenicity, cell surface phenotype, and multilineage repopulation capacity after transplantation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Similar to transforming growth factor β, treatment of purified cells with BMP-2 or -7 at high concentrations inhibited proliferation yet maintained the primitive CD34+CD38− phenotype and repopulation capacity. In contrast, low concentrations of BMP-4 induced proliferation and differentiation of CD34+ CD38−Lin− cells, whereas at higher concentrations BMP-4 extended the length of time that repopulation capacity could be maintained in ex vivo culture, indicating a direct effect on stem cell survival. The discovery that BMPs are capable of regulating repopulating cells provides a new pathway for controlling human stem cell development and a powerful model system for studying the biological mechanism of BMP action using primary human cells.


2007 ◽  
Vol 1 (6) ◽  
pp. 671-684 ◽  
Author(s):  
Hong Qian ◽  
Natalija Buza-Vidas ◽  
Craig D. Hyland ◽  
Christina T. Jensen ◽  
Jennifer Antonchuk ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (10) ◽  
pp. 2733-2742 ◽  
Author(s):  
Cristina Mazzon ◽  
Achille Anselmo ◽  
Javier Cibella ◽  
Cristiana Soldani ◽  
Annarita Destro ◽  
...  

Abstract Hematopoiesis is the process leading to the sustained production of blood cells by hematopoietic stem cells (HSCs). Growth, survival, and differentiation of HSCs occur in specialized microenvironments called “hematopoietic niches,” through molecular cues that are only partially understood. Here we show that agrin, a proteoglycan involved in the neuromuscular junction, is a critical niche-derived signal that controls survival and proliferation of HSCs. Agrin is expressed by multipotent nonhematopoietic mesenchymal stem cells (MSCs) and by differentiated osteoblasts lining the endosteal bone surface, whereas Lin−Sca1+c-Kit+ (LSK) cells express the α-dystroglycan receptor for agrin. In vitro, agrin-deficient MSCs were less efficient in supporting proliferation of mouse Lin−c-Kit+ cells, suggesting that agrin plays a role in the hematopoietic cell development. These results were indeed confirmed in vivo through the analysis of agrin knockout mice (Musk-L;Agrn−/−). Agrin-deficient mice displayed in vivo apoptosis of CD34+CD135− LSK cells and impaired hematopoiesis, both of which were reverted by an agrin-sufficient stroma. These data unveil a crucial role of agrin in the hematopoietic niches and in the cross-talk between stromal and hematopoietic stem cells.


Stem Cells ◽  
2014 ◽  
Vol 32 (7) ◽  
pp. 1878-1889 ◽  
Author(s):  
Hajime Akada ◽  
Saeko Akada ◽  
Robert E. Hutchison ◽  
Kazuhito Sakamoto ◽  
Kay-Uwe Wagner ◽  
...  

2016 ◽  
Vol 38 (4) ◽  
pp. 358-370 ◽  
Author(s):  
Rui Monteiro ◽  
Philip Pinheiro ◽  
Nicola Joseph ◽  
Tessa Peterkin ◽  
Jana Koth ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3545-3545
Author(s):  
Pelu Tran ◽  
Antonia MS Mueller ◽  
Judith Shizuru

Abstract Abstract 3545 Poster Board III-482 Standing in the line of first defense, the liver is a critical immunocompetent organ. It is armed with lymphocytes, including T cells (TC), natural killer (NK) cells, NK T cells, and a variety of antigen-presenting cells (APC), such as dendritic cells and resident macrophages (Mph), called Kupffer cells. Because it is exposed to large amounts of toxins and antigens, both destructive and harmless, liver immunity must provide immunogenic and tolerogenic mechanisms. Moreover, as the organ of fetal blood production the liver can, if required, resume its hematopoietic function. Here, we studied the role of the liver as a hematopoietic and lymphatic organ after hematopoietic cell transplantation (HCT). Lethally irradiated BALB.K and BALB.B mice were given MHC-matched, FACS purified hematopoietic stem cells (HSC; cKit+Sca1+Thy1.1loLin-) from AKR/J and C57BL/6 donors, respectively, alone or supplemented with 10∧7 splenocytes (SP) for GVHD induction. Mononuclear cells (MNC) were Ficoll-separated from flushed livers 1 to 6 weeks (w) post transplant (pTX) and FACS analyzed. In recipients of TC-containing grafts, the liver was a major target organ of acute graft-vs-host disease (GVHD) with prominent donor lymphocyte expansion causing destruction of the hepatic portal morphology. Rare HSC-derived cells were observed in the livers. In contrast, mice given purified HSC showed no clinical or histological signs of GVHD, yet early pTX a high proportion of donor HSC-derived MNC was observed within the livers, comprising ∼75% of the MNC at 2w. Phenotype analysis revealed that these HSC-derived MNC were primarily NK cells (DX5+CD122+) or Mph (Mac1+F4/80+). In fact, amongst all nucleated cells, NK cells represented >10% and were mixed donor/host type. Interestingly, the Mph were all donor derived. This observation of over-representation by cells of innate immunity (including NK cells and Mph) in livers of recipients of HSC alone led us to hypothesize that these cells might exert protective functions against increased amounts of pathogens and toxins entering the circulation from irradiation-damaged intestines. Thus, to suppress donor Mph reconstitution pTX, silica was injected intraperitoneally on d-1, and every 3d thereafter. All recipients of HSC alone recovered rapidly after irradiation (d5-7), while at this time point recipients of HSC plus silica showed severe weight loss, hunched posture, ruffled fur, diarrhea, with <50% (7/15) survival. These survivors clinically stabilized around d12, suggesting that the intestines recovered from injury. To test if the presence of the HSC derived NK cells and APC could contribute to host protection from GVHD, a lethal dose of SP (10∧7) was injected simultaneously with HSC, or with a delay of 7d or 9d. All mice given SP on d0 died within 9d and 3/5 of those receiving SP on d7 died by d12. However, all mice given SP on d9 recovered fully and showed no signs of GVHD, despite the lymphopenic host environment that usually promotes homeostatic expansion of mature donor TC. In conclusion, the role of the liver as an immunologically active organ after ‘conventional’ HCT is often masked by donor TC expansion with subsequent GVHD. Here, we provide evidence that if grafts are devoid of mature lymphoid cells, innate immunity recovers rapidly, and in fact exceeds unmanipulated controls. Donor Mph may protect the host from pathogens and endotoxemia. Moreover, they may neutralize activated donor TC and thereby mediate tolerance between donor and host. Likewise, the elevated proportion of donor and host NK cells, which is lacking in GVHD affected mice, suggest another beneficial mechanism of protection, as NK cells have been reported to be capable of reducing GVHD. Immunohistochemical studies for a better quantitative assessment of resident immune cells in the liver pTX are underway. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1180-1180
Author(s):  
Hajime Akada ◽  
Saeko Akada ◽  
Golam Mohi

Abstract Hematopoietic stem cells (HSCs) play an essential role in the long-term maintenance of hematopoiesis. Various intracellular signaling proteins, transcription factors and extracellular matrix proteins contribute to the maintenance and function of HSCs. Jak2, a member of the Janus family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines. It has been shown that germ-line deletion of Jak2 results in embryonic lethality whereas post-natal or adult stage deletion of Jak2 results in anemia and thrombocytopenia in mice. However, the role of Jak2 in the maintenance and function of adult HSCs has remained elusive. Understanding the normal function of Jak2 in adult HSC/progenitors is of considerable significance since mutations in Jak2 have been associated with several myeloproliferative neoplasms (MPNs), and most patients treated with Jak2 inhibitors exhibit significant hematopoietic toxicities. To assess the role of Jak2 in adult HSCs, we have utilized a conditional Jak2 knock-out (Jak2 floxed) allele and an inducible MxCre line that can efficiently express Cre recombinase in adult HSC/progenitors after injections with polyinosine-polycytosine (pI-pC). We have found that deletion of Jak2 in adult mice results in pancytopenia, bone marrow aplasia and 100% lethality within 25 to 42 days after pI-pC induction. Analysis of the HSC/progenitor compartments revealed that Jak2-deficiency causes marked decrease in long-term HSCs, short-term HSCs, multipotent progenitors and early progenitors of all hematopoietic lineages, indicating a defect at the earliest stage of adult hematopoietic development. We have found that deletion of Jak2 leads to increased HSC cell cycle entry, suggesting that Jak2-deficiency results in loss of quiescence in HSCs. Jak2-deficiency also resulted in significant apoptosis in HSCs. Furthermore Jak2-deficient bone marrow cells were severely defective in reconstituting hematopoiesis in lethally-irradiated recipient animals. Competitive repopulations experiments also show that Jak2 is essential for HSC functional activity. We also have confirmed that the requirement for Jak2 in HSCs is cell-autonomous. To gain insight into the mechanism by which Jak2 controls HSC maintenance and function, we have performed phospho flow analysis on HSC-enriched LSK (lin-Sca-1+c-kit+) cells. TPO and SCF-evoked Akt and Erk activation was significantly reduced in Jak2-deficient LSK compared with control LSK. Stat5 phosphorylation in response to TPO was also completely inhibited in Jak2-deficient LSK cells. In addition, we observed significantly increased intracellular reactive oxygen species (ROS) levels and enhanced activation of p38 MAPK in Jak2-deficient LSK cells, consistent with the loss of quiescence observed in Jak2-deficient HSCs. Treatment with ROS scavenger N-acetyl cysteine partially rescued the defects in Jak2-deficient HSCs in reconstituting hematopoiesis in lethally irradiated recipient animals. Gene expression analysis revealed significant downregulation of HSC-specific gene sets in Jak2-deficient LSK cells. Taken together, our data strongly suggest that Jak2 plays a critical role in the maintenance of quiescence, survival and self-renewal of adult HSCs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document