Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete

Author(s):  
Syed Safdar Raza ◽  
Liaqat Ali Qureshi ◽  
Babar Ali ◽  
Ali Raza ◽  
Mudasser Muneer Khan
2018 ◽  
Vol 162 ◽  
pp. 04004 ◽  
Author(s):  
Eyad Kadhem ◽  
Ammar Ali ◽  
Sameh Tobeia

Reactive Powder Concrete (RPC) is a type of ultra-high performance concrete, this dense composite material generally characterized by high cement content, high durability, low porosity, low water/cement ratio and in most cases contains steel fibers as new types of concrete appears, further investigation for their mechanical properties are needed. This work aims to give a better understanding of RPC behavior by deriving formulas to calculate the modulus of elasticity and the splitting tensile strength in relation with compressive strength and steel fibers content. This study is based on data obtained from the experimental investigation done in this work and from others pervious works. The parametric study is based mainly on the silica fume content which is used in four different ratios (12 %, 15 %, 20 % and 25 %), the use of micro steel fibers 15 mm in length, 0.2 mm in diameter and aspect ratio of 75 added in ratios of (0 %, 1 %, 1.5 % and 2 %), and water/cement in ratios of (16 %, 18 %, 20 % and 22 %), respectively. The proposed equations show a better behavior in comparison to some available equations that were used in the estimation of modulus of elasticity and splitting tensile strength of reactive powder concrete, the coefficient of variation for the proposed equations (COV) decrease to 10.677% and 10.455% respectively.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud Ahmed Ali Abdelrahim ◽  
Aboelwafa Elthakeb ◽  
Usama Mohamed ◽  
Mohamed Taha Noaman

Abstract Reactive Powder Concrete (RPC) is a concrete of the modern generation it mainly contains a high percentage of cement and a small percentage of water For cement as well as the presence of fine sand, ground quartz and silica dust. This research aims Studying the behavior and mechanical characteristics of RPC exposed to elevated temperatures. The key variables in this study are steel fibers content and the high temperatures of different levels 25, 200, 300, 400 ºC. Mechanical properties of concrete behavior including compressive strength, splitting tensile strength, stress-strain relationship (modulus of elasticity), and flexural strength. The test findings indicated that the Output strength of RPC specimens decreased when the high temperature increases. At a temperature of 400 °C, all samples lost the compressive strength and splitting tensile strength.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Bong-Seop Lee ◽  
Chang-Hoon Bang

Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results.


2012 ◽  
Vol 568 ◽  
pp. 39-42
Author(s):  
Yu Zhuo Jia ◽  
Li Lin

SAP2000 structural analysis software is used to designed two of 500kV partially prestressed reactive powder concrete pole cross arm; moreover, poles of the two cross arm program have been compared. The results show that the triangular truss cross arm has good mechanical properties, improving the main mate’rial of the stress state, the pole reduced height 10m, by the analysis of the structure shows, this cross arm has higher reliability under the operating conditions, which can be used in 500kV transmission line; from economic and technical performance, the pole cost of this program is greatly reduced, while speeding up the construction progress and improving the comprehensive benefits of the poles in the transmission line.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


2014 ◽  
Vol 904 ◽  
pp. 3-6 ◽  
Author(s):  
Zhi Gang Yin

The different influencing regular of fly-ash fractiontype of fibre (steel fibre and polypropylene fibre) and fibre fraction on the mechanical property and fracture behavior of Reactive Powder Concrete (PRC) are studied. Fracture mechanical properties of RPC is researched in double-K fracture model and fracture energy release rate G . Test results show that the crack propagation of RPC with steel fibers is limited. Its fracture toughness and pre-critical crack length is largely enhanced. Double-K fracture model and fracture energy release rate G are consistent with describing the fracture behavior of RPC.


Author(s):  
D. Ambika ◽  
S. Dhinu Priya ◽  
G. Poovizhi ◽  
V. Santha Rubini ◽  
V. Nandhini

Sign in / Sign up

Export Citation Format

Share Document