Mechanical and barrier properties of polyvinyl chloride plasticized with dioctyl phthalate, epoxidized soybean oil, and epoxidized cardanol

Author(s):  
Sukanya Satapathy ◽  
Aruna Palanisamy
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Toan Duy Nguyen ◽  
Chinh Thuy Nguyen ◽  
Van Thanh Thi Tran ◽  
Giang Vu Nguyen ◽  
Hai Viet Le ◽  
...  

Plasticized polyvinyl chloride (PVC) was fabricated using epoxidized soybean oil (ESBO) as a secondary bioplasticizer with dioctyl phthalate (DOP). The PVC/MFA/CB composites were prepared by melt mixing of the plasticized PVC with modified fly ash (MFA), carbon black N330 (CB), and polychloroprene (CR) in a Haake Rheomix mixer using a rotation speed of 50 rpm at 175°C for 6 min and then compressed by Toyoseiki pressure machine under 15 MPa. The effect of ESBO content on morphology, melt viscosity, tensile properties, and flame retardancy of PVC/MFA/CB composites was investigated. The obtained results showed that the incorporation of ESBO has significantly enhanced the processing ability, Young’s modulus, tensile strength, and elongation at break of the PVC/MFA/CB composites. The torque of PVC/MFA/CB composites was increased to approximately 12% when 50 wt% of DOP was replaced by ESBO. When ESBO was 20 wt% in comparison with DOP weight, the elongation at break, tensile strength, and Young’s modulus of the composites were increased to 48%, 24%, and 4.5%, respectively. Correspondingly, thermogravimetric analysis results confirmed that ESBO had improved the thermostability of the PVC composites. The ESBO have potential as a secondary bioplasticizer replacement material for DOP owing to their better thermomechanical stability.


2017 ◽  
Vol 25 (5) ◽  
pp. 5033-5039 ◽  
Author(s):  
Min Sun Choi ◽  
Shaheed Ur Rehman ◽  
Hyeon Kim ◽  
Sang Beom Han ◽  
Jeongmi Lee ◽  
...  

2012 ◽  
Vol 89 (11) ◽  
pp. 2067-2075 ◽  
Author(s):  
J. M. España ◽  
L. Sánchez-Nacher ◽  
T. Boronat ◽  
V. Fombuena ◽  
R. Balart

2021 ◽  
pp. 009524432110290
Author(s):  
Leandro Hernán Esposito ◽  
Angel José Marzocca

The potential replacement of a treated residual aromatic extract mineral oil (TRAE) by a highly epoxidized soybean oil (ESO) into a silica-filled styrene-butadiene rubber compound was investigated. In order to determine if ESO compounds performance are suitable for tread tire applications, processing properties cure and characteristics were evaluated. The impact of ESO amount on the silica dispersion was confirmed by Payne Effect. The presence of chemical or physical interactions between ESO and silica improves the filler dispersion, enabling the compound processability and affecting the cure kinetic rate. An adjusted rubber compound with 2 phr of ESO and 2 phr of sulfur presented the higher stiffness and strength values with lower weight loss from a wear test compared with TRAE compound at an equal amount of oil and curing package. Furthermore, wet grip and rolling resistance predictors of both compounds gave comparable results, maintaining a better performance and reducing the dependence of mineral oil for tire tread compounds.


Author(s):  
Arkadiusz Zych ◽  
Jonathan Tellers ◽  
Laura Bertolacci ◽  
Luca Ceseracciu ◽  
Lara Marini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document