scholarly journals RNA protein interactions governing expression of the most abundant protein in human body, type I collagen

2013 ◽  
Vol 4 (5) ◽  
pp. 535-545 ◽  
Author(s):  
Branko Stefanovic
Author(s):  
Karina Ambrock ◽  
Bernd Grohe ◽  
Silvia Mittler

Collagen is the most abundant protein in the human body and serves many functions, from mechanical stability and elasticity in tendons and bone, to optical properties, such as transparency and a fine tuned refractive index in the cornea of the eye. Collagen has interested humankind for centuries: Leonardo Da Vinci studied and drew the tendons in the human body precisely in the 15th and 16th century. A look at the literature reveals easily > 200,000 papers. This article reviews oriented type I collagen artificial alignment strategies.


1993 ◽  
Vol 264 (4) ◽  
pp. G589-G595 ◽  
Author(s):  
D. A. Brenner ◽  
J. Westwick ◽  
M. Breindl

Cirrhosis is characterized by an increased deposition of extracellular matrix proteins, including type I collagen. Type I collagen is a product of two genes, alpha 1(I) and alpha 2(I), which are generally coordinately regulated. Since expression of type I collagen genes is increased during cirrhosis, understanding the structure and function of the regulatory components of the type I collagen genes should provide insight into the molecular pathogenesis of cirrhosis. This review will analyze the collagen alpha 1(I) gene with respect to chromatin structure, DNA methylation, regulation by agonists, and DNA-protein interactions.


2007 ◽  
Vol 232 (9) ◽  
pp. 1121-1129 ◽  
Author(s):  
Valerie S. LeBleu ◽  
Brian MacDonald ◽  
Raghu Kalluri

Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM–like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.


2001 ◽  
Vol 277 (6) ◽  
pp. 4223-4231 ◽  
Author(s):  
Gloria A. Di Lullo ◽  
Shawn M. Sweeney ◽  
Jarmo Körkkö ◽  
Leena Ala-Kokko ◽  
James D. San Antonio

Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


2007 ◽  
Vol 177 (4S) ◽  
pp. 314-314 ◽  
Author(s):  
Joon-Yang Kim ◽  
Hoon Seog Jean ◽  
Beom Joon Kim ◽  
Kye Yong Song

Sign in / Sign up

Export Citation Format

Share Document