The Role of Integrins in Adhesion of Decidual NK Cells to Extracellular Matrix and Decidual Stromal Cells

1995 ◽  
Vol 166 (1) ◽  
pp. 53-61 ◽  
Author(s):  
TANYA D. BURROWS ◽  
ASHLEY KING ◽  
Y.W. LOKE
2021 ◽  
Author(s):  
Bhaskar Basu ◽  
Subhajit Karmakar

Extracellular vesicles (EVs) are cell-derived lipid membrane bound vesicles that serve as mediators of intercellular communication. EVs have been found to regulate a wide range of cellular processes through the transference of genetic, protein and lipid messages from the host cell to the recipient cell. Unsurprisingly, this major mode of intracellular communication would be abrogated in cancer. Ever increasing evidence points towards a key role of EVs in promoting tumor development and in contributing to the various stages of metastasis. Tumor released EVs have been shown to facilitate the transference of oncogenic proteins and nucleic acids to other tumor cells and to the surrounding stromal cells, thereby setting up a tumor permissive microenvironment. EVs released from tumor cells have been shown to promote extracellular matrix (ECM) remodeling through the modulation of neighboring tumor cells and stromal cells. EVs released from disseminated tumor cells have been reported to attract circulating tumor cells (CTCs) via chemotaxis and induce the production of specific extracellular matrix components from neighboring stromal cells so as to support the growth of metastatic cells at the secondary tumor site. Circulating levels of tumor derived EVs of patients have been correlated with incidence of metastasis and disease relapse.


2005 ◽  
Vol 175 (10) ◽  
pp. 6352-6360 ◽  
Author(s):  
Alessandro Poggi ◽  
Claudia Prevosto ◽  
Anna-Maria Massaro ◽  
Simone Negrini ◽  
Serena Urbani ◽  
...  

Author(s):  
Thomas Crowley ◽  
Jason D. Turner ◽  
Andrew Filer ◽  
Andy Clark ◽  
Chris Buckley

Fibroblasts are ubiquitous stromal cells, with populations found in all organs. The traditional role of fibroblasts was thought to be mainly structural; making and modifying extracellular matrix. Taken together the ability of fibroblasts to produce and respond to many factors involved in the immune system indicates the degree to which they are involved in orchestrating the inflammatory response in rheumatoid arthritis (RA). This level of involvement demonstrates the importance of fibroblasts in inflammation and indicates the shift from transient to chronic inflammation in RA could be facilitated in part by synovial fibroblasts. This chapter explores the role of fibroblasts in RA.


1998 ◽  
Vol 31 (4) ◽  
pp. 990-994
Author(s):  
Yoshihide Otani ◽  
Yoshihiko Sakurai ◽  
Naoki Igarashi ◽  
Takeyoshi Yokoyama ◽  
Masaru Kimata ◽  
...  

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1480-1492 ◽  
Author(s):  
H Lerat ◽  
JC Lissitzky ◽  
JW Singer ◽  
A Keating ◽  
P Herve ◽  
...  

Abstract Fibronectin is a major component of the extracellular matrix of adherent layers of human long-term marrow cultures where it may stabilize the extracellular matrix network and provide adhesion sites for primitive hemopoietic cells. This study was devised to analyze the role of adherent cell populations in fibronectin synthesis, matrix assembly, and degradation. In cultures performed under the conditions described by Gartner and Kaplan, immunoprecipitation after metabolic labeling showed that adherent cells synthesized a fibronectin variant comprising the EDa domain and lacking the EDb one. Vascular smooth muscle-like stromal cells were the cell subset responsible for this synthesis. Once synthesized by stromal cells, EDa+fibronectin was secreted into the supernatant and incorporated into the extracellular matrix. The cumulation in the extracellular matrix was predominant by weeks 5 and 6 of culture, when a decrease in the stromal cell intracytoplasmic content of fibronectin was observed. Stromal cells from a transformed cell line, L2Ori-, were also able to synthesize the EDa+fibronectin variant, although for these cells the assembly into the extracellular matrix was partly impaired. Besides stromal cells, other cell types participated in fibronectin synthesis: early-adhering granulomonocytic cells and macrophages appearing later in culture were able to synthesize an EDa-, EDb- fibronectin variant, clearly distinct from the EDa+ variant produced by stromal cells. Studies on cultures in which macrophage growth was stimulated at the expense of stromal cells by adding granulocyte-macrophage colony-stimulating factor (50 ng/mL) to the culture medium showed a striking decrease in amounts of fibronectin measured in the adherent layer. This decrease was caused by a lack of incorporation of fibronectin in the extracellular matrix, disclosing a major difference between stromal cells and macrophages in terms of matrix assembly. This study confirms the similarity between stromal cells and vascular smooth muscle cells, because in vivo subendothelial intimal aortic smooth muscle cells and cultured smooth muscle cells from the aortic media express the EDa+, EDb- fibronectin variant. Furthermore, our results suggest that the level of fibronectin in adherent layers is regulated by stromal cells and macrophages. The balance between these two cell populations may therefore be crucial for the local control of hemopoiesis by regulating the extracellular fibronectin available for the adhesion of hematopoietic cells. Our data indicate that it may be essential to study the adhesion of stem cells to EDa+, EDb- fibronectin instead of EDa-, EDb- soluble fibronectin, as found in human plasma.


2002 ◽  
pp. 61-73 ◽  
Author(s):  
J T Arnold ◽  
J T Isaacs

The acquisition of an androgen-independent phenotype by prostate cancer cells is presently a death sentence for patients. In order to have a realistic chance of changing this outcome, an understanding of what drives the progression to androgen independence is critical. We review here a working hypothesis based on the position that the development of androgen-independent epithelial cells is the result of a series of cellular and molecular events within the whole tissue that culminates in the loss of normal tissue-maintained growth control. This tissue includes the epithelial and stromal cells, the supporting extracellular matrix and circulating hormones. This review discusses the characteristics of these malignant cells, the role of stromal cells involved in growth and the differentiation of epithelial cells, and the role of the extracellular matrix as a mediator of the phenotypes of stromal and epithelial cells. In addition, environmental, neuroendocrine and immune factors that may contribute to disturbance of the fine balance of the epithelial-stromal-extracellular matrix connection are considered. While the goal of many therapeutic approaches to prostate cancer has been androgen ablation or targeting the androgen receptor (AR) of epithelial cells, these therapies become ineffective as the cells progress beyond dependence on androgen for growth control. Twenty years ago Sir David Smithers debated that cancer is the result of loss of tolerance within tissues and the organizational failure of normal growth-control mechanisms. This is precipitated by prolonged or abnormal demands for regeneration or repair, rather than of any inherent disorder peculiar to each of the individual components involved. He wrote "It is not the cell itself that is disorderly, but its relationship with the rest of the tissue". We have gained significantly large amounts of precise data on the effects of androgenic ablation on cancerous prostate cells and on the role of the AR in prostate cancer. The need has come to compile this information towards a perspective of dysregulation of tissue as a whole, and to develop experimental systems to address this broader perspective to find and develop therapies for treatment and prevention.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1480-1492 ◽  
Author(s):  
H Lerat ◽  
JC Lissitzky ◽  
JW Singer ◽  
A Keating ◽  
P Herve ◽  
...  

Fibronectin is a major component of the extracellular matrix of adherent layers of human long-term marrow cultures where it may stabilize the extracellular matrix network and provide adhesion sites for primitive hemopoietic cells. This study was devised to analyze the role of adherent cell populations in fibronectin synthesis, matrix assembly, and degradation. In cultures performed under the conditions described by Gartner and Kaplan, immunoprecipitation after metabolic labeling showed that adherent cells synthesized a fibronectin variant comprising the EDa domain and lacking the EDb one. Vascular smooth muscle-like stromal cells were the cell subset responsible for this synthesis. Once synthesized by stromal cells, EDa+fibronectin was secreted into the supernatant and incorporated into the extracellular matrix. The cumulation in the extracellular matrix was predominant by weeks 5 and 6 of culture, when a decrease in the stromal cell intracytoplasmic content of fibronectin was observed. Stromal cells from a transformed cell line, L2Ori-, were also able to synthesize the EDa+fibronectin variant, although for these cells the assembly into the extracellular matrix was partly impaired. Besides stromal cells, other cell types participated in fibronectin synthesis: early-adhering granulomonocytic cells and macrophages appearing later in culture were able to synthesize an EDa-, EDb- fibronectin variant, clearly distinct from the EDa+ variant produced by stromal cells. Studies on cultures in which macrophage growth was stimulated at the expense of stromal cells by adding granulocyte-macrophage colony-stimulating factor (50 ng/mL) to the culture medium showed a striking decrease in amounts of fibronectin measured in the adherent layer. This decrease was caused by a lack of incorporation of fibronectin in the extracellular matrix, disclosing a major difference between stromal cells and macrophages in terms of matrix assembly. This study confirms the similarity between stromal cells and vascular smooth muscle cells, because in vivo subendothelial intimal aortic smooth muscle cells and cultured smooth muscle cells from the aortic media express the EDa+, EDb- fibronectin variant. Furthermore, our results suggest that the level of fibronectin in adherent layers is regulated by stromal cells and macrophages. The balance between these two cell populations may therefore be crucial for the local control of hemopoiesis by regulating the extracellular fibronectin available for the adhesion of hematopoietic cells. Our data indicate that it may be essential to study the adhesion of stem cells to EDa+, EDb- fibronectin instead of EDa-, EDb- soluble fibronectin, as found in human plasma.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document