A Graphic Approach to Analyzing Codon Usage in 1562 Escherichia coli Protein Coding Sequences

1994 ◽  
Vol 238 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Chun-Ting Zhang ◽  
Kuo-Chen Chou
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Laura Jeacock ◽  
Joana Faria ◽  
David Horn

Protein abundance differs from a few to millions of copies per cell. Trypanosoma brucei presents an excellent model for studies on codon bias and differential gene expression because transcription is broadly unregulated and uniform across the genome. T. brucei is also a major human and animal protozoal pathogen. Here, an experimental assessment, using synthetic reporter genes, revealed that GC3 codons have a major positive impact on both mRNA and protein abundance. Our estimates of relative expression, based on coding sequences alone (codon usage and sequence length), are within 2-fold of the observed values for the majority of measured cellular mRNAs (n > 7000) and proteins (n > 2000). Our estimates also correspond with expression measures from published transcriptome and proteome datasets from other trypanosomatids. We conclude that codon usage is a key factor affecting global relative mRNA and protein expression in trypanosomatids and that relative abundance can be effectively estimated using only protein coding sequences.


2019 ◽  
Vol 8 (23) ◽  
Author(s):  
Si Chul Kim ◽  
Hyo Jung Lee

Here, we report the draft genome sequence of Pseudorhodobacter sp. strain E13, a Gram-negative, aerobic, nonflagellated, and rod-shaped bacterium which was isolated from the Yellow Sea in South Korea. The assembled genome sequence is 3,878,578 bp long with 3,646 protein-coding sequences in 159 contigs.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Xuhua Xia

Abstract The optimization of the translational machinery in cells requires the mutual adaptation of codon usage and tRNA concentration, and the adaptation of tRNA concentration to amino acid usage. Two predictions were derived based on a simple deterministic model of translation which assumes that elongation of the peptide chain is rate-limiting. The highest translational efficiency is achieved when the codon recognized by the most abundant tRNA reaches the maximum frequency. For each codon family, the tRNA concentration is optimally adapted to codon usage when the concentration of different tRNA species matches the square-root of the frequency of their corresponding synonymous codons. When tRNA concentration and codon usage are well adapted to each other, the optimal content of all tRNA species carrying the same amino acid should match the square-root of the frequency of the amino acid. These predictions are examined against empirical data from Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 326
Author(s):  
Yu-Jun Wang ◽  
Hua-Ling Wang ◽  
Xiao-Wei Wang ◽  
Shu-Sheng Liu

Females and males often differ obviously in morphology and behavior, and the differences between sexes are the result of natural selection and/or sexual selection. To a great extent, the differences between the two sexes are the result of differential gene expression. In haplodiploid insects, this phenomenon is obvious, since males develop from unfertilized zygotes and females develop from fertilized zygotes. Whiteflies of the Bemisia tabaci species complex are typical haplodiploid insects, and some species of this complex are important pests of many crops worldwide. Here, we report the transcriptome profiles of males and females in three species of this whitefly complex. Between-species comparisons revealed that non-sex-biased genes display higher variation than male-biased or female-biased genes. Sex-biased genes evolve at a slow rate in protein coding sequences and gene expression and have a pattern of evolution that differs from those of social haplodiploid insects and diploid animals. Genes with high evolutionary rates are more related to non-sex-biased traits—such as nutrition, immune system, and detoxification—than to sex-biased traits, indicating that the evolution of protein coding sequences and gene expression has been mainly driven by non-sex-biased traits.


1993 ◽  
Vol 13 (8) ◽  
pp. 5034-5042
Author(s):  
C L Wellington ◽  
M E Greenberg ◽  
J G Belasco

The protein-coding region of the c-fos proto-oncogene transcript contains elements that direct the rapid deadenylation and decay of this mRNA in mammalian cells. The function of these coding region instability determinants requires movement of ribosomes across mRNAs containing them. Three types of mechanisms could account for this translational requirement. Two of these possibilities, (i) that rapid mRNA decay might be mediated by the nascent polypeptide chain and (ii) that it might result from an unusual codon usage, have experimental precedent. Here, we present evidence that the destabilizing elements in the c-fos coding region are not recognized in either of these two ways. Instead, the ability of the c-fos coding region to function as a potent mRNA destabilizer when translated in the +1 reading frame indicates that the signals for rapid deadenylation and decay reside in the sequence or structure of the RNA comprising this c-fos domain.


2018 ◽  
Vol 7 (14) ◽  
Author(s):  
Nikolay V. Volozhantsev ◽  
Angelina A. Kislichkina ◽  
Anastasia I. Lev ◽  
Ekaterina V. Solovieva ◽  
Vera P. Myakinina ◽  
...  

We report here the genome sequences of 10 Klebsiella pneumoniae strains of capsular type K2 isolated in Russia from patients in an infectious clinical hospital and neurosurgical intensive care unit. The draft genome sizes range from 5.34 to 5.87 Mb and include 5,448 to 6,137 protein-coding sequences.


Sign in / Sign up

Export Citation Format

Share Document