The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences

Gene ◽  
1984 ◽  
Vol 30 (1-3) ◽  
pp. 157-166 ◽  
Author(s):  
M.J. Bibb ◽  
P.R. Findlay ◽  
M.W. Johnson
2003 ◽  
Vol 81 (2) ◽  
pp. 89-90 ◽  
Author(s):  
RICHARD M. KLIMAN ◽  
JODY HEY

The usage of preferred codons in Drosophila melanogaster is reduced in regions of lower recombination. This is consistent with population genetics theory, whereby the effectiveness of selection on multiple targets is limited by stochastic effects caused by linkage. However, because the selectively preferred codons in D. melanogaster end in C or G, it has been argued that base-composition-biasing effects of recombination can account for the observed relationship between preferred codon usage and recombination rate (Marais et al., 2003). Here, we show that the correlation between base composition (of protein-coding and intron regions) and recombination rate holds only for lower values of the latter. This is consistent with a Hill–Robertson interference model and does not support a model whereby the entire effect of recombination on codon usage can be attributed to its potential role in generating compositional bias.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Laura Jeacock ◽  
Joana Faria ◽  
David Horn

Protein abundance differs from a few to millions of copies per cell. Trypanosoma brucei presents an excellent model for studies on codon bias and differential gene expression because transcription is broadly unregulated and uniform across the genome. T. brucei is also a major human and animal protozoal pathogen. Here, an experimental assessment, using synthetic reporter genes, revealed that GC3 codons have a major positive impact on both mRNA and protein abundance. Our estimates of relative expression, based on coding sequences alone (codon usage and sequence length), are within 2-fold of the observed values for the majority of measured cellular mRNAs (n > 7000) and proteins (n > 2000). Our estimates also correspond with expression measures from published transcriptome and proteome datasets from other trypanosomatids. We conclude that codon usage is a key factor affecting global relative mRNA and protein expression in trypanosomatids and that relative abundance can be effectively estimated using only protein coding sequences.


2020 ◽  
Author(s):  
Keren Halabi ◽  
Eli Levy Karin ◽  
Laurent Guéguen ◽  
Itay Mayrose

Abstract Detecting the signature of selection in coding sequences and associating it with shifts in phenotypic states can unveil genes underlying complex traits. Of the various signatures of selection exhibited at the molecular level, changes in the pattern of selection at protein coding genes have been of main interest. To this end, phylogenetic branch-site codon models are routinely applied to detect changes in selective patterns along specific branches of the phylogeny. Many of these methods rely on a pre-specified partition of the phylogeny to branch categories, thus treating the course of trait evolution as fully resolved and assuming that phenotypic transitions have occurred only at speciation events. Here we present TraitRELAX, a new phylogenetic model that alleviates these strong assumptions by explicitly accounting for the uncertainty in the evolution of both trait and coding sequences. This joint statistical framework enables the detection of changes in selection intensity upon repeated trait transitions. We evaluated the performance of TraitRELAX using simulations and then applied it to two case studies. Using TraitRELAX, we found an intensification of selection in the primate SEMG2 gene in polygynandrous species compared to species of other mating forms, as well as changes in the intensity of purifying selection operating on sixteen bacterial genes upon transitioning from a free-living to an endosymbiotic lifestyle.


2019 ◽  
Author(s):  
Matt Crum ◽  
Nikhil Ram-Mohan ◽  
Michelle M. Meyer

AbstractIn comparison to protein coding sequences, the impact of mutation and natural selection on the sequence and function of non-coding (ncRNA) genes is not well understood. Many ncRNA genes are narrowly distributed to only a few organisms, and appear to be rapidly evolving. Compared to protein coding sequences, there are many challenges associated with assessment of ncRNAs that are not well addressed by conventional phylogenetic approaches, including: short sequence length, lack of primary sequence conservation, and the importance of secondary structure for biological function. Riboswitches are structured ncRNAs that directly interact with small molecules to regulate gene expression in bacteria. They typically consist of a ligand-binding domain (aptamer) whose folding changes drive changes in gene expression. The glycine riboswitch is among the most well-studied due to the widespread occurrence of a tandem aptamer arrangement (tandem), wherein two homologous aptamers interact with glycine and each other to regulate gene expression. However, a significant proportion of glycine riboswitches are comprised of single aptamers (singleton). Here we use graph clustering to circumvent the limitations of traditional phylogenetic analysis when studying the relationship between the tandem and singleton glycine aptamers. Graph clustering enables a broader range of pairwise comparison measures to be used to assess aptamer similarity. Using this approach, we show that one aptamer of the tandem glycine riboswitch pair is typically much more highly conserved, and that which aptamer is conserved depends on the regulated gene. Furthermore, our analysis also reveals that singleton aptamers are more similar to either the first or second tandem aptamer, again based on the regulated gene. Taken together, our findings suggest that tandem glycine riboswitches degrade into functional singletons, with the regulated gene(s) dictating which glycine-binding aptamer is conserved.Author SummaryThe glycine riboswitch is a ncRNA responsible for the regulation of several distinct gene sets in bacteria that is found with either one (singleton) or two (tandem) aptamers, each of which directly senses glycine. Which aptamer is more important for gene-regulation, and the functional difference between tandem and singleton aptamers, are long-standing questions in the riboswitch field. Like many biologically functional RNAs, glycine aptamers require a specific 3D folded conformation. Thus, they have low primary sequence similarity across distantly related homologs, and large changes in sequence length that make creation and analysis of accurate multiple sequence alignments challenging. To better understand the relationship between tandem and singleton aptamers, we used a graph clustering approach that allows us to compare the similarity of aptamers using metrics that measure both sequence and structure similarity. Our investigation reveals that in tandem glycine riboswitches, one aptamer is more highly conserved than the other, and which aptamer is conserved depends on what gene(s) are regulated. Moreover, we find that many singleton glycine riboswitches likely originate from tandem riboswitches in which the ligand-binding site of the non-conserved aptamer has degraded over time.


2011 ◽  
Vol 8 (1) ◽  
pp. 82-85 ◽  
Author(s):  
Sophie Marion de Procé ◽  
Kai Zeng ◽  
Andrea J. Betancourt ◽  
Brian Charlesworth

We have used a polymorphism dataset on introns and coding sequences of X-linked loci in Drosophila americana to estimate the strength of selection on codon usage and/or biased gene conversion (BGC), taking into account a recent population expansion detected by a maximum-likelihood method. Drosophila americana was previously thought to have a stable demographic history, so that this evidence for a recent population expansion means that previous estimates of selection need revision. There was evidence for natural selection or BGC favouring GC over AT variants in introns, which is stronger for GC-rich than GC-poor introns. By comparing introns and coding sequences, we found evidence for selection on codon usage bias, which is much stronger than the forces acting on GC versus AT basepairs in introns.


2019 ◽  
Vol 8 (23) ◽  
Author(s):  
Si Chul Kim ◽  
Hyo Jung Lee

Here, we report the draft genome sequence of Pseudorhodobacter sp. strain E13, a Gram-negative, aerobic, nonflagellated, and rod-shaped bacterium which was isolated from the Yellow Sea in South Korea. The assembled genome sequence is 3,878,578 bp long with 3,646 protein-coding sequences in 159 contigs.


Sign in / Sign up

Export Citation Format

Share Document