The Fine Structure of YCuO2+x Delafossite Determined by Synchrotron Powder Diffraction and Electron Microscopy

2001 ◽  
Vol 156 (2) ◽  
pp. 428-436 ◽  
Author(s):  
G. Van Tendeloo ◽  
O. Garlea ◽  
C. Darie ◽  
C. Bougerol-Chaillout ◽  
P. Bordet
2009 ◽  
Vol 42 (2) ◽  
pp. 225-233 ◽  
Author(s):  
C. C. Tang ◽  
S. P. Thompson ◽  
J. E. Parker ◽  
A. R. Lennie ◽  
F. Azough ◽  
...  

Vaterite is one of three polymorphs of calcium carbonate (CaCO3) found in nature, the others being calcite and aragonite. Here the formation of vaterite from decomposition of ikaite (CaCO3·6H2O) was investigated using synchrotron powder diffraction and scanning electron microscopy. The crystallite sizes of vaterite (∼40 nm) were found to be much smaller than those of the precursor ikaite (∼0.5–1.0 µm) as a result of vaterite nucleating as ikaite dehydrates. The rate of decomposition to vaterite increases with temperature, indicating kinetic control of this transformation. It is postulated that the structural arrangement of the hydration sphere around Ca2+in ikaite determines the orientation of Ca2+and CO32−ions such that vaterite nucleates upon dehydration. This implies that the dehydration of a precursor hydrated phase such as ikaite is required for vaterite nucleation.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
C. W. Kischer

The morphology of the fibroblasts changes markedly as the healing period from burn wounds progresses, through development of the hypertrophic scar, to resolution of the scar by a self-limiting process of maturation or therapeutic resolution. In addition, hypertrophic scars contain an increased cell proliferation largely made up of fibroblasts. This tremendous population of fibroblasts seems congruous with the abundance of collagen and ground substance. The fine structure of these cells should reflect some aspects of the metabolic activity necessary for production of the scar, and might presage the stage of maturation.A comparison of the fine structure of the fibroblasts from normal skin, different scar types, and granulation tissue has been made by transmission (TEM) and scanning electron microscopy (SEM).


Author(s):  
Robert R. Cardell

Hypophysectomy of the rat renders this animal deficient in the hormones of the anterior pituitary gland, thus causing many primary and secondary hormonal effects on basic liver functions. Biochemical studies of these alterations in the rat liver cell are quite extensive; however, relatively few morphological observations on such cells have been recorded. Because the available biochemical information was derived mostly from disrupted and fractionated liver cells, it seemed desirable to examine the problem with the techniques of electron microscopy in order to see what changes are apparent in the intact liver cell after hypophysectomy. Accordingly, liver cells from rats which had been hypophysectomized 5-120 days before sacrifice were studied. Sham-operated rats served as controls and both hypophysectomized and control rats were fasted 15 hours before sacrifice.


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


Author(s):  
Alan N. Hodgson

The hermaphrodite duct of pulmonate snails connects the ovotestis to the fertilization pouch. The duct is typically divided into three zones; aproximal duct which leaves the ovotestis, the middle duct (seminal vesicle) and the distal ovotestis duct. The seminal vesicle forms the major portion of the duct and is thought to store sperm prior to copulation. In addition the duct may also play a role in sperm maturation and degredation. Although the structure of the seminal vesicle has been described for a number of snails at the light microscope level there appear to be only two descriptions of the ultrastructure of this tissue. Clearly if the role of the hermaphrodite duct in the reproductive biology of pulmonatesis to be understood, knowledge of its fine structure is required.Hermaphrodite ducts, both containing and lacking sperm, of species of the terrestrial pulmonate genera Sphincterochila, Levantina, and Helix and the marine pulmonate genus Siphonaria were prepared for transmission electron microscopy by standard techniques.


1964 ◽  
Vol 23 (1) ◽  
pp. 63-78 ◽  
Author(s):  
James R. Coleman ◽  
Montrose J. Moses

The indium trichloride method of Watson and Aldridge (38) for staining nucleic acids for electron microscopy was employed to study the relationship of DNA to the structure of the synaptinemal complex in meiotic prophase chromosomes of the domestic rooster. The selectivity of the method was demonstrated in untreated and DNase-digested testis material by comparing the distribution of indium staining in the electron microscope to Feulgen staining and ultraviolet absorption in thicker sections seen with the light microscope. Following staining by indium, DNA was found mainly in the microfibril component of the synaptinemal complex. When DNA was known to have been removed from aldehyde-fixed material by digestion with DNase, indium stainability was also lost. However, staining of the digested material with non-selective heavy metal techniques demonstrated the presence of material other than DNA in the microfibrils and showed that little alteration in appearance of the chromosome resulted from DNA removal. The two dense lateral axial elements of the synaptinemal complex, but not the central one to any extent, also contained DNA, together with non-DNA material.


2007 ◽  
Vol 353-358 ◽  
pp. 2163-2166
Author(s):  
Ming Yang ◽  
Guo Qing Zhou ◽  
Jiang Guo Zhao ◽  
Zhan Jun Li

Nanocubes, monodispersed nanocrystals and nanospheres of Au have been prepared by a simple reaction between HAuCl4·4H2O, NaOH and NH2OH·HCl in the presence of gelatin. The role of gelatin and the affection of pH in producing the nanoparticles of Au were discussed. The products were characterized by X-ray powder diffraction, transmission electron microscopy, and UV-visible absorption spectroscopy. The sizes of the monodispersed nanocrystals of Au were estimated by Debye-Scherrer formula according to XRD spectrum.


Sign in / Sign up

Export Citation Format

Share Document