Large-Scale Production of HIV-1 Protease from Escherichia coli Using Selective Extraction and Membrane Fractionation

1995 ◽  
Vol 6 (4) ◽  
pp. 512-518 ◽  
Author(s):  
M.E. Gustafson ◽  
K.D. Junger ◽  
B.A. Foy ◽  
J.A. Baez ◽  
B.F. Bishop ◽  
...  
Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


1982 ◽  
Vol 60 (12) ◽  
pp. 1143-1147 ◽  
Author(s):  
Harry W. Duckworth ◽  
Alexander W. Bell

Starting with a colicin E1 resistance recombinant plasmid which contains gltA, the gene for citrate synthase in Escherichia coli, we have constructed an ampicillin-resistance plasmid containing the gltA region as a 2.9-kilobase-pair insert in the tetracycline-resistance region of pBR322. Escherichia coli HB101 harbouring this plasmid, when grown on rich medium containing ampicillin, contains citrate synthase as about 8% of its soluble protein. The enzyme has been purified from this rich source and is identical to the chromosomal enzyme prepared previously in every property tested, except for specific activity, which is 64 U∙mg−1 as compared with 45–50 U∙mg−1 previously obtained. The N-terminal sequences of both enzymes are reported, and they are identical up to residue 16 at least. The overall yield of pure enzyme, starting with the cells grown in 15 L of medium, is 600–800 mg.


2008 ◽  
Vol 74 (10) ◽  
pp. 2967-2975 ◽  
Author(s):  
Ryan D. Woodyer ◽  
Nathan J. Wymer ◽  
F. Michael Racine ◽  
Shama N. Khan ◽  
Badal C. Saha

ABSTRACT A new synthetic platform with potential for the production of several rare sugars, with l-ribose as the model target, is described. The gene encoding the unique NAD-dependent mannitol-1-dehydrogenase (MDH) from Apium graveolens (garden celery) was synthetically constructed for optimal expression in Escherichia coli. This MDH enzyme catalyzes the interconversion of several polyols and their l-sugar counterparts, including the conversion of ribitol to l-ribose. Expression of recombinant MDH in the active form was successfully achieved, and one-step purification was demonstrated. Using the created recombinant E. coli strain as a whole-cell catalyst, the synthetic utility was demonstrated for production of l-ribose, and the system was improved using shaken flask experiments. It was determined that addition of 50 to 500 μM ZnCl2 and addition of 5 g/liter glycerol both improved production. The final levels of conversion achieved were >70% at a concentration of 40 g/liter and >50% at a concentration of 100 g/liter. The best conditions determined were then scaled up to a 1-liter fermentation that resulted in 55% conversion of 100 g/liter ribitol in 72 h, for a volumetric productivity of 17.4 g liter−1 day−1. This system represents a significantly improved method for the large-scale production of l-ribose.


Vaccine ◽  
1989 ◽  
Vol 7 (2) ◽  
pp. 189
Author(s):  
N. Barrett ◽  
A. Mitterer ◽  
J. Eibl ◽  
M. Eibl ◽  
B. Moss ◽  
...  

1989 ◽  
Vol 5 (2) ◽  
pp. 159-171 ◽  
Author(s):  
NOEL BARRETT ◽  
ARTUR MITTERER ◽  
WOLFGANG MUNDT ◽  
JOHANN EIBL ◽  
MARTHA EIBL ◽  
...  

1998 ◽  
Vol 7 (5) ◽  
pp. 437-448 ◽  
Author(s):  
BRUCE L. LEVINE ◽  
JULIO COTTE ◽  
CAROLYNN C. SMALL ◽  
RICHARD G. CARROLL ◽  
JAMES L. RILEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document