Yersinia pseudotuberculosis, Its Toxins and Plant Cells

Author(s):  
Nelly Timchenko ◽  
Marina Eliseikina ◽  
Viktor Bulgakov ◽  
Elena Bulakh ◽  
Elena Yasnetskaya ◽  
...  
2022 ◽  
Vol 98 (6) ◽  
pp. 664-670
Author(s):  
N. F. Timchenko ◽  
М. G. Еliseikina ◽  
G. K. Tchernoded ◽  
O. V. Grishchenko ◽  
А. V. Rakov ◽  
...  

Background. A significant role in the ecology of the sapronotic pathogens Yersinia pseudotuberculosis and Listeria monocytogenes and in the epidemiology of the infections they cause is played by land plants used for food. These microorganisms are often found on plant substrates, they multiply on various vegetable and root crops. In this regard, it is relevant to study the viability and biological activity of Y. pseudotuberculosis and L. monocytogenes in contact with various land plants, including those that are not eaten, but are used in medicine.Aim. Study of the interaction of sapronotic pathogens Y. pseudotuberculosis and L. monocytogenes with callus cultures of the land plant Lithospermum erythrorhizon Siebold et Zucc.Materials and methods. The studies included strains of Y. pseudotuberculosis 512 serotype 1b, pYV+, 82MD+ and L. monocytogenes NCTC (4b) 10527 from the Collection of Somov Institute of Epidemiology and Microbiology, and cell culture from the roots of red-root gromwell Lithospermum erythrorhizon line VC-39 (from the Collection of FSC of the East Asia Terrestrial Biodiversity FEB RAS).Before the study, Y. pseudotuberculosis and L . monocytogenes were cultured 18–20 hours on nutrient agar pH 7.1–7.2. A working dilution of microorganisms was prepared (106 micobial cells per 1 ml) and applied at a dose of 100 μl to the surface of plant calli. Material samples were taken in dynamics after 3 and 14 days and prepared for scanning electron microscopy.Results. Y. pseudotuberculosis and L. monocytogenes formed biofilms on the surface of plant cells within 3 days after the start of the experiment. It was noted that Y. pseudotuberculosis destroyed the components of the plant cell membrane.Conclusion. New data obtained during the study expand the understanding of environments and forms of habitation, as well as the potential for pathogenicity of sapronotic pathogens in the environment.


Author(s):  
G. M. Hutchins ◽  
J. S. Gardner

Cytokinins are plant hormones that play a large and incompletely understood role in the life-cycle of plants. The goal of this study was to determine what roles cytokinins play in the morphological development of wheat. To achieve any real success in altering the development and growth of wheat, the cytokinins must be applied directly to the apical meristem, or spike of the plant. It is in this region that the plant cells are actively undergoing mitosis. Kinetin and Zeatin were the two cytokinins chosen for this experiment. Kinetin is an artificial hormone that was originally extracted from old or heated DNA. Kinetin is easily made from the reaction of adenine and furfuryl alcohol. Zeatin is a naturally occurring hormone found in corn, wheat, and many other plants.Chinese Spring Wheat (Triticum aestivum L.) was used for this experiment. Prior to planting, the seeds were germinated in a moist environment for 72 hours.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Author(s):  
M. Yamada ◽  
K. Ueda ◽  
K. Kuboki ◽  
H. Matsushima ◽  
S. Joens

Use of variable Pressure SEMs is spreading among electron microscopists The variable Pressure SEM does not necessarily require specimen Preparation such as fixation, dehydration, coating, etc which have been required for conventional scanning electron microscopy. The variable Pressure SEM allows operating Pressure of 1˜270 Pa in specimen chamber It does not allow microscopy of water-containing specimens under a saturated vapor Pressure of water. Therefore, it may cause shrink or deformation of water-containing soft specimens such as plant cells due to evaporation of water. A solution to this Problem is to lower the specimen temperature and maintain saturated vapor Pressures of water at low as shown in Fig. 1 On this technique, there is a Published report of experiment to have sufficient signal to noise ratio for scondary electron imaging at a relatively long working distance using an environmental SEM. We report here a new low temperature microscopy of soft Plant cells using a variable Pressure SEM (Hitachi S-225ON).


1992 ◽  
Vol 2 (5) ◽  
pp. 809-813 ◽  
Author(s):  
K Gordon ◽  
J Futterer ◽  
T Hohn

1993 ◽  
Vol 3 (5) ◽  
pp. 637-646 ◽  
Author(s):  
Jian-Kang Zhu ◽  
Jun Shi ◽  
Utpal Singh ◽  
Sarah E. Wyatt ◽  
Ray A. Bressan ◽  
...  

1990 ◽  
Vol 79 (1) ◽  
pp. 184-189
Author(s):  
W. J. Lucas ◽  
A. Lansing ◽  
J. R. de Wet ◽  
V. Walbot

Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 30-34
Author(s):  
K. Korobkova ◽  
V. Patyka

Contemporary state of the distribution of mycoplasma diseases of cultivated crops in Ukraine was analyzed. The changes of the physiological state of plant cells under the impact of mollicutes were investigated. It was demonstrated that there is temporary increase in the activity of peroxidase, catalase, polyphenoloxidase, phenylalanine-ammonia-lyase at the early stages of interaction. The adhesive properties are changed in the mollicutes under the impact of plant lectin; there is synthesis of new polypeptides. It was determined that the phytopathogenic acholeplasma is capable of producing a complex of proteolytic enzymes into the culture me- dium. It was concluded that when plant cells are infected with acholeplasma, a number of signaling interactions and metabolic transformations condition the recognition of pathogenesis and ensure the aggregate response of a plant to stress in the form of defense reactions. It was assumed that some specifi cities of the biology of phy- topathogenic acholeplasma determine their avoiding the immune mechanisms of plants and promote long-term persistence of mollicutes.


Sign in / Sign up

Export Citation Format

Share Document