Interactions Between Mesenchymal Stem Cells and Dendritic Cells

Author(s):  
Grazia Maria Spaggiari ◽  
Lorenzo Moretta
Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 46-57 ◽  
Author(s):  
Bin Zhang ◽  
Rui Liu ◽  
Dan Shi ◽  
Xingxia Liu ◽  
Yuan Chen ◽  
...  

Abstract Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2–dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.


2016 ◽  
Vol 139 (9) ◽  
pp. 2068-2081 ◽  
Author(s):  
Tithi Ghosh ◽  
Subhasis Barik ◽  
Avishek Bhuniya ◽  
Jesmita Dhar ◽  
Shayani Dasgupta ◽  
...  

2004 ◽  
Vol 4 (2) ◽  
pp. 88
Author(s):  
Kee Won Kim ◽  
Suk Young Park ◽  
Kyung Bock Lee ◽  
Hyun-su Kim

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Maosheng Chen ◽  
Jing Peng ◽  
Qi Xie ◽  
Na Xiao ◽  
Xian Su ◽  
...  

The anti-inflammatory and immunomodulatory properties of mesenchymal stem cells (MSCs) have been proposed to be involved in some autoimmune diseases and have been successfully tested in patients and mice. But their contribution to psoriasis and the underlying mechanisms involved remains elusive. Here, we explored the feasibility of using human umbilical cord-derived MSC (hUC-MSC) infusion as a therapeutic approach in an imiquimod- (IMQ-) induced psoriasis mouse model. MSC infusion were found to significantly reduce the severity and development of psoriasis, inhibit the infiltration of immune cells to the skin, and downregulate the expression of several proinflammatory cytokines and chemokines. Our results provide an explanation for the therapeutic effects of MSC infusion by first suppressing neutrophil function and then downregulating the production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Therefore, we discovered a novel mechanism of stem cell therapy for psoriasis. In summary, our results showed that MSC infusion could be an effective and safe treatment for psoriasis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alberto Vázquez ◽  
Lidia M. Fernández-Sevilla ◽  
Eva Jiménez ◽  
David Pérez-Cabrera ◽  
Rosa Yañez ◽  
...  

Recent clinical observations indicate that bacterial vaccines induce cross-protection against infections produced by different microorganisms. MV130, a polyvalent bacterial sublingual preparation designed to prevent recurrent respiratory infectious diseases, reduces the infection rate in patients with recurrent respiratory tract infections. On the other hand, mesenchymal stem cells (MSCs) are key cell components that contribute to the maintenance of tissue homeostasis and exert both immunostimulatory and immunosuppressive functions. Herein, we study the effects of MV130 in human MSC functionality as a potential mechanism that contributes to its clinical benefits. We provide evidence that during MV130 sublingual immunization of mice, resident oral mucosa MSCs can take up MV130 components and their numbers remain unchanged after vaccination, in contrast to granulocytes that are recruited from extramucosal tissues. MSCs treated in vitro with MV130 show an increased viability without affecting their differentiation potential. In the short-term, MSC treatment with MV130 induces higher leukocyte recruitment and T cell expansion. In contrast, once T-cell activation is initiated, MV130 stimulation induces an up-regulated expression of immunosuppressor factors in MSCs. Accordingly, MV130-primed MSCs reduce T lymphocyte proliferation, induce the differentiation of dendritic cells with immunosuppressive features and favor M2-like macrophage polarization, thus counterbalancing the immune response. In addition, MSCs trained with MV130 undergo functional changes, enhancing their immunomodulatory response to a secondary stimulus. Finally, we show that MSCs are able to uptake, process and retain a reservoir of the TLR ligands derived from MV130 digestion which can be subsequently transferred to dendritic cells, an additional feature that also may be associated to trained immunity.


Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 4120-4126 ◽  
Author(s):  
Xiao-Xia Jiang ◽  
Yi Zhang ◽  
Bing Liu ◽  
Shuang-Xi Zhang ◽  
Ying Wu ◽  
...  

AbstractMesenchymal stem cells (MSCs), in addition to their multilineage differentiation, have a direct immunosuppressive effect on T-cell proliferation in vitro. However, it is unclear whether they also modulate the immune system by acting on the very first step. In this investigation, we addressed the effects of human MSCs on the differentiation, maturation, and function of dendritic cells (DCs) derived from CD14+ monocytes in vitro. Upon induction with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin-4 (IL-4), MSC coculture could strongly inhibit the initial differentiation of monocytes to DCs, but this effect is reversible. In particular, such suppression could be recapitulated with no intercellular contact at a higher MSC/monocyte ratio (1:10). Furthermore, mature DCs treated with MSCs were significantly reduced in the expression of CD83, suggesting their skew to immature status. Meanwhile, decreased expression of presentation molecules (HLA-DR and CD1a) and costimulatory molecules (CD80 and CD86) and down-regulated IL-12 secretion were also observed. In consistence, the allostimulatory ability of MSC-treated mature DCs on allogeneic T cells was impaired. In conclusion, our data suggested for the first time that human MSCs could suppress monocyte differentiation into DCs, the most potent antigen-presenting cells (APCs), thus indicating the versatile regulation of MSCs on the ultimate specific immune response.


Immunology ◽  
2009 ◽  
Vol 128 (4) ◽  
pp. 564-572 ◽  
Author(s):  
Lieke C. J. Van Den Berk ◽  
Helene Roelofs ◽  
Tonnie Huijs ◽  
Kim G. C. Siebers-Vermeulen ◽  
Reinier A. Raymakers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document