Spring Wheat Breeding

Cereals ◽  
2009 ◽  
pp. 127-156 ◽  
Author(s):  
M. Mergoum ◽  
P.K. Singh ◽  
J.A. Anderson ◽  
R.J. Peña ◽  
R.P. Singh ◽  
...  
Keyword(s):  
1985 ◽  
Vol 57 (1) ◽  
pp. 1-66
Author(s):  
Reijo Karjalainen

Host-pathogen interaction between spring wheat and Septoria nodorum Berk. with applications for wheat breeding were studied. Ultrastructure of interactions was studied using electron microscopic techniques. Following inoculation, conidia of S. nodorum germinate, form appressoria anda penetration peg which directly penetrates through the cell walls. It is suggested that most penetration attempts fail because of cellular defence reactions, formation of papillae and cell wall alterations. Inoculation with low spore concentration reduced grain yield of Hankkija’s Taava cultivar by 10 % and 1000-grain weight by 14 %. Inoculation with high spore concentration on large plots of Tähti cultivar reduced grain yield by 32 % and 1000-grain weight by 18 %. Inoculation with high spore concentration on normal breeding plots of Tähti cultivar reduced grain yield by 35 % and 1000-grain weight by 21 % and the grain yield of Kadett cultivar by 27 % and 1000-grain weight by 20 %. Inheritance studies on F2 progenies of spring wheat crosses involving susceptible and moderately or highly resistant parents suggest that heredity component of symptom expression is moderate level and breeding success depends mainly on efficient screening techniques. Resistance was associated with tallness in crosses, and cultivar trials suggest that resistance is positively associated with late maturation time. Field screening techniques based on small plots and artificial inoculation showed that the most resistant entries were wild Triticum species and late and tall cultivars. Seedling plant tests based on attached seedling leaves and detached leaves revealed easily the most resistant and most susceptible cultivars. The overall correlation between seedling tests and field tests was quite high. The results are discussed in relation to wheat breeding strategies for resistance to S. nodorum.


1980 ◽  
Vol 60 (4) ◽  
pp. 1141-1146 ◽  
Author(s):  
H. G. NASS

The use of harvest index as a selection criterion for grain yield in F2 populations of spring wheat (Triticum aestivum L.) grown at two population densities was investigated. Harvest index was useful in delineating yield differences between lines for both crosses. The F4 lines selected in F2 for a high harvest index yielded about 9% more per plot in 1978 than F4 lines having a low harvest index in F2. Generally, lines selected at the higher commercial seeding rate yielded more than lines selected at the lower plant density. In 1979, a heavy Fusarium infection reduced the mean grain yield of the F6 lines and suppressed any significant response to selection resulting from population density and harvest index in F2. While selection based on high harvest index at low population density can be used to select higher yielding plants it was not as effective as selection at high population density which more closely approximates commercial crop densities. Additional research is needed before the use of harvest index as a selection tool in wheat breeding programs can be recommended for use in Atlantic Canada.


2020 ◽  
Vol 250 ◽  
pp. 107757 ◽  
Author(s):  
Suchismita Mondal ◽  
Somak Dutta ◽  
Leonardo Crespo-Herrera ◽  
Julio Huerta-Espino ◽  
Hans J. Braun ◽  
...  

Crop Science ◽  
2019 ◽  
Vol 59 (5) ◽  
pp. 2036-2045 ◽  
Author(s):  
Leomar Guilherme Woyann ◽  
Andrei Daniel Zdziarski ◽  
Rodrigo Zanella ◽  
Ana Claudia Rosa ◽  
Ricardo Lima Castro ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kamal Khadka ◽  
Davoud Torkamaneh ◽  
Mina Kaviani ◽  
Francois Belzile ◽  
Manish N. Raizada ◽  
...  

Abstract Background Appropriate information about genetic diversity and population structure of germplasm improves the efficiency of plant breeding. The low productivity of Nepali bread wheat (Triticum aestivum L.) is a major concern particularly since Nepal is ranked the 4th most vulnerable nation globally to climate change. The genetic diversity and population structure of Nepali spring wheat have not been reported. This study aims to improve the exploitation of more diverse and under-utilized genetic resources to contribute to current and future breeding efforts for global food security. Results We used genotyping-by-sequencing (GBS) to characterize a panel of 318 spring wheat accessions from Nepal including 166 landraces, 115 CIMMYT advanced lines, and 34 Nepali released varieties. We identified 95 K high-quality SNPs. The greatest genetic diversity was observed among the landraces, followed by CIMMYT lines, and released varieties. Though we expected only 3 groupings corresponding to these 3 seed origins, the population structure revealed two large, distinct subpopulations along with two smaller and scattered subpopulations in between, with significant admixture. This result was confirmed by principal component analysis (PCA) and UPGMA distance-based clustering. The pattern of LD decay differed between subpopulations, ranging from 60 to 150 Kb. We discuss the possibility that germplasm explorations during the 1970s–1990s may have mistakenly collected exotic germplasm instead of local landraces and/or collected materials that had already cross-hybridized since exotic germplasm was introduced starting in the 1950s. Conclusion We suggest that only a subset of wheat “landraces” in Nepal are authentic which this study has identified. Targeting these authentic landraces may accelerate local breeding programs to improve the food security of this climate-vulnerable nation. Overall, this study provides a novel understanding of the genetic diversity of wheat in Nepal and this may contribute to global wheat breeding initiatives.


2004 ◽  
Vol 123 (4) ◽  
pp. 349-354 ◽  
Author(s):  
A. J. Kelbert ◽  
D. Spaner ◽  
K. G. Briggs ◽  
J. R. King

1994 ◽  
Vol 74 (4) ◽  
pp. 753-757 ◽  
Author(s):  
P. E. Jedel

Vernalization responses are known to differ among spring wheat (Triticum aestivum L.) genotypes. Three crosses were made to determine the inheritance of vernalization response in the spring wheat cultivars Cajeme 71, Yecora 70, Glenlea, Pitic 62 and Neepawa. Segregation analyses of days to anthesis were made of the F2 generation in a growth room (25/15 °C, 16/8 h). Segregation analysis of the F3 generation was made in a summer greenhouse. Reciprocal crosses between Neepawa and Pitic 62 indicated an early/late/transgressively late ratio of 12:3:1 in the F2 generation. The F3 generation results fitted an early/late/transgressively late/segregating ratio of 4:1:1:10. Based on the segregation of transgressively late types from both crosses, it was concluded that the genes for spring habit in Pitic 62 and Neepawa were different and not maternally inherited. The Glenlea/Pitic 62 cross produced one transgressively late segregant in an F2 population of 97 plants. The data fitted an early/late/transgressively late ratio of 60:3:1, indicating that Glenlea may differ from Pitic at three Vrn loci. Therefore, either Glenlea or Pitic 62 may carry two dominant Vrn alleles. The reciprocal crosses between Yecora 70 and Cajeme 71 did not segregate transgressively late types in the F2 generation. Therefore, those cultivars had a Vrn allele in common. Selection for vernalization response might be useful when introducing exotic germplasm into spring wheat breeding programs and in manipulating maturity responses. Key words: Vernalization, spring wheat, Vrn genes


Euphytica ◽  
2009 ◽  
Vol 169 (2) ◽  
pp. 239-252 ◽  
Author(s):  
Todd A. Reid ◽  
Rong-Cai Yang ◽  
Donald F. Salmon ◽  
D. Spaner

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148671 ◽  
Author(s):  
Liangliang Gao ◽  
M. Kathryn Turner ◽  
Shiaoman Chao ◽  
James Kolmer ◽  
James A. Anderson

Sign in / Sign up

Export Citation Format

Share Document