First-Order Sliding Mode Concepts

Author(s):  
Halim Alwi ◽  
Christopher Edwards ◽  
Chee Pin Tan
Keyword(s):  
2017 ◽  
Vol 65 (2) ◽  
pp. 233-245
Author(s):  
Y. Wang ◽  
M. Sun ◽  
S. Du ◽  
Z. Chen

Abstract Target manoeuvre is one of the key factors affecting guidance accuracy. To intercept highly maneuverable targets, a second-order sliding-mode guidance law, which is based on the super-twisting algorithm, is designed without depending on any information about the target motion. In the designed guidance system, the target estimator plays an essential role. Besides the existing higher-order sliding-mode observer (HOSMO), a first-order linear observer (FOLO) is also proposed to estimate the target manoeuvre, and this is the major contribution of this paper. The closed-loop guidance system can be guaranteed to be uniformly ultimately bounded (UUB) in the presence of the FOLO. The comparative simulations are carried out to investigate the overall performance resulting from these two categories of observers. The results show that the guidance law with the proposed linear observer can achieve better comprehensive criteria for the amplitude of normalised acceleration and elevator deflection requirements. The reasons for the different levels of performance of these two observer-based methods are thoroughly investigated.


2013 ◽  
Vol 13 (01) ◽  
pp. 1250073 ◽  
Author(s):  
SEYYED M. HASHEMINEJAD ◽  
M. NEZAMI ◽  
M. E. ARYAEE PANAH

This paper investigates the active control of the supersonic flutter motion of an elastically supported rectangular sandwich plate, which has a tunable electrorheological (ER) fluid core and rests on a Winkler–Pasternak elastic foundation, subjected to an arbitrary flow of various yaw angles. The classical thin plate theory is adopted. The ER fluid core is modeled as a first order Kelvin–Voigt material, and the quasi-steady first order supersonic piston theory is employed for the aerodynamic loading. The generalized Fourier expansions in conjunction with Galerkin method are employed to formulate the governing equations in the state-space domain. The critical dynamic pressures at which unstable panel oscillations occur are obtained for a square sandwich plate, with or without an interacting soft/stiff elastic foundation, for selected applied electric field strengths and flow yaw angles. The Runge–Kutta method is then used to calculate the open-loop aeroelastic response of the system in various basic loading configurations. Subsequently, a sliding mode control (SMC) synthesis is set up to actively suppress the closed loop system response in yawed supersonic flight conditions with imposed excitations. The results demonstrate the performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system.


2019 ◽  
Vol 52 (16) ◽  
pp. 771-776
Author(s):  
Ryo Kikuuwe ◽  
Rainhart Pasaribu ◽  
Gyuho Byun
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fayiz Abu Khadra ◽  
Jaber Abu Qudeiri

Four classes of second order sliding mode controllers (2-SMC) have been successfully applied to regulate the liquid level in the second tank of a coupled tanks system. The robustness of these classes of 2-SMC is investigated and their performances are compared with a first order controller to show the merits of these controllers. The effectiveness of these controllers is verified through computer simulations. Comparison between the controllers is based on the time domain performance measures such as rise time, settling time, and the integral absolute error. Results showed that controllers are able to regulate the liquid level with small differences in their performance.


2013 ◽  
Vol 709 ◽  
pp. 583-588
Author(s):  
Jin Hua Ye ◽  
Di Li ◽  
Shi Yong Wang ◽  
Feng Ye

This paper develops a high performance guidance controller for automated guided vehicle (AGV) with nonholonomic constraint. In this controller, the path following method in the Serret-Frenet frame is used for driving the AGV onto a predefined path at a constant forward speed. Moreover, a first order dynamic sliding mode controller is proposed, not only to overcome the impact of unknown model uncertainties and external disturbances of the system, but also to weaken the chattering in the standard sliding mode control. The global asymptotic stability and robustness of the system is proven by the Lyapunov theory and LaSalles invariance principle. Simulation results show the validity of the proposed guidance control scheme.


Sign in / Sign up

Export Citation Format

Share Document