In Vitro Functional Assay Using Real-Time Cell Analysis for Assessing Cancer Immunotherapeutic Agents

Author(s):  
Biao Xi ◽  
Peifang Ye ◽  
Vita Golubovskaya ◽  
Yama Abassi
2015 ◽  
Vol 42 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Stephan Benay ◽  
Christophe Meille ◽  
Stefan Kustermann ◽  
Isabelle Walter ◽  
Antje Walz ◽  
...  
Keyword(s):  

2014 ◽  
Vol 1058 ◽  
pp. 339-343
Author(s):  
Tian Xing Wang ◽  
Kai Qi Su ◽  
Ning Hu ◽  
Ping Wang

In vitro rapid cell-based bioassay is one of the effective methods to evaluate cardio-myocyte function by characteristics of beating rate, contractility, and toxicity. In this study, rapid profile assessing drug-induced arrhythmia was studied by treating cardiomyocyte-based biosensor with some drugs, which resulted in compound-specific changes in the cardiomyocyte beating evolution profiles and growth evolution profiles. Also, rapid profile assessment of cardiomyocyte-based biosensor was also determined by several types of compoundsFrom the compound experiment results, cardiomyocyte-based biosensor with real-time cell analysis technology can monitor the cardiomyocyte beating status in a non-invasive way and indicate the potential of drug-induced arrhythmia.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193498 ◽  
Author(s):  
Fabio Cerignoli ◽  
Yama A. Abassi ◽  
Brandon J. Lamarche ◽  
Garret Guenther ◽  
David Santa Ana ◽  
...  
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3808
Author(s):  
Iuliana Maria Chirică ◽  
Ana-Maria Enciu ◽  
Teddy Tite ◽  
Maria Dudău ◽  
Lucian Albulescu ◽  
...  

Cation-substituted hydroxyapatite (HA), standalone or as a composite (blended with polymers or metals), is currently regarded as a noteworthy candidate material for bone repair/regeneration either in the form of powders, porous scaffolds or coatings for endo-osseous dental and orthopaedic implants. As a response to the numerous contradictions reported in literature, this work presents, in one study, the physico-chemical properties and the cytocompatibility response of single cation-doped (Ce, Mg, Sr or Zn) HA nanopowders in a wide concentration range (0.5–5 at.%). The modification of composition, morphology, and structure was multiparametrically monitored via energy dispersive X-ray, X-ray photoelectron, Fourier-transform infrared and micro-Raman spectroscopy methods, as well as by transmission electron microscopy and X-ray diffraction. From a compositional point of view, Ce and Sr were well-incorporated in HA, while slight and pronounced deviations were observed for Mg and Zn, respectively. The change of the lattice parameters, crystallite size, and substituting cation occupation factors either in the Ca(I) or Ca(II) sites were further determined. Sr produced the most important HA structural changes. The in vitro biological performance was evaluated by the (i) determination of leached therapeutic cations (by inductively coupled plasma mass spectrometry) and (ii) assessment of cell behaviour by both conventional assays (e.g., proliferation—3-(4,5-dimethyl thiazol-2-yl) 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay; cytotoxicity—lactate dehydrogenase release assay) and, for the first time, real-time cell analysis (RTCA). Three cell lines were employed: fibroblast, osteoblast, and endothelial. When monophasic, the substituted HA supported the cells’ viability and proliferation without signs of toxicity. The RTCA results indicate the excellent adherence of cells. The study strived to offer a perspective on the behaviour of Ce-, Mg-, Sr-, or Zn-substituted HAs and to deliver a well-encompassing viewpoint on their effects. This can be highly important for the future development of such bioceramics, paving the road toward the identification of candidates with highly promising therapeutic effects.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
S Findlay ◽  
C J Plummer ◽  
R Plummer ◽  
J H Gill

Abstract   Anthracyclines (e.g. epirubicin, doxorubicin, daunorubicin) are widely used for the treatment of adult and paediatric cancers. Despite their therapeutic efficacy, anthracyclines are associated with both acute and late-onset cardiac toxicities. Meta-analyses report an overt cardiotoxicity incidence of 6.3%, whilst sub-clinical cardiotoxicity incidence is 17.9% (1). Angiotensin converting enzyme (ACE) inhibitors are used to treat anthracycline-induced cardiotoxicity (AIC) (2) and despite their efficacy being well studied for the treatment of heart failure, hypertension and post-acute coronary syndromes, their mechanism(s) for treating and preventing AIC remain unknown. Using in vitro cardiomyocytes, we evaluated the angiotensin signalling mechanisms stimulated by doxorubicin chemotherapy, applying quantitative PCR, immunofluorescence and real-time cell analysis technologies. In vitro adult human ventricular cardiomyocytes (AC10 cell line) treated with clinically relevant sub-toxic concentrations of doxorubicin, demonstrate a dose and time-dependent increase in angiotensin II type-1 receptor (AT1R) gene expression. Maximal AT1R expression was observed after 24 hours' exposure at 250 nanomolar (nM), with qPCR recording up to 13-fold increases in expression relative to control (figure 1). Consistent with gene expression studies, doxorubicin also induced expression of AT1R at the protein level, with immunofluorescence imaging displaying up-regulation of AT1R in association with doxorubicin concentrations up to 500nM (figure 2). Western blot results also support the induction of AT1R, however no relationship was observed between either doxorubicin concentration or drug exposure time. Cellular growth and morphological changes of cardiomyocytes in response to clinically relevant doses of doxorubicin treatment were evaluated with real-time cell analysis using impedance-based xCELLigence technology. During the early phases of doxorubicin exposure, an increase in cell size was observed, whilst experiments modelling the pharmacokinetics and serial half-lives of doxorubicin demonstrated reversibility of doxorubicin-induced cardiomyocyte injury following drug elimination. These data support the mechanistic hypothesis that a relationship exists between AIC and modulation of the angiotensin signalling pathway in cardiomyocytes. We demonstrate that cardiomyocyte exposure to doxorubicin induces AT1R gene and protein expression, whilst doxorubicin-induced cardiomyocyte injury displays reversibility following drug elimination. Genetic polymorphisms within the ACE gene have been associated with cardiomyopathy and left ventricular hypertrophy. Our research now provides the platform to ascertain whether the ACE genotype contributes to heart failure from AIC, and whether an elevation in pro-hypertrophic angiotensin II levels could exacerbate anthracycline-induced hypertrophy and promote the development of late-onset anthracycline-induced heart failure. FUNDunding Acknowledgement Type of funding sources: Private grant(s) and/or Sponsorship. Main funding source(s): Cancer Research UK PhD research grant


1983 ◽  
Vol 50 (02) ◽  
pp. 518-523 ◽  
Author(s):  
C Kluft ◽  
A F H Jie ◽  
R A Allen

SummaryFunctional assay of extrinsic (tissue-type) plasminogen activator (EPA) in plasma on fibrin plates was evaluated. Using specific quenching antibodies, we demonstrated the method to be specific for EPA under all conditions tested. Contributions of urokinases and intrinsic activators were excluded. The quantity of EPA in blood samples, as compared with purified uterine tissue activator, shows 1 blood activator unit (BAU) to be comparable to 0.93 ng.The median values for EPA activity for healthy volunteers were: baseline, 1.9 BAU/ml (n = 123); diurnal, 5.5 BAU/ml (n = 12); DDAVP administration, 11.7 BAU/ml (n = 39); exhaustive exercise, 25 BAU/ml (n = 24); venous occlusion (15 min), 35 BAU/ml (n = 61). A large inter-individual variation in EPA activity was found, while individual baseline values tended to be constant for periods of weeks.In vitro in blood EPA activity shows a disappearance of 50% in about 90 min at 37° C; EPA activity in euglobulin fractions is stable for ≤2 hr at 37° C.A rapid decrease in EPA activity occurs in vivo, as noted after extracorporal circulation and exercise stimulation (t½ decay, 2-5 min).


Sign in / Sign up

Export Citation Format

Share Document