Fluorescence Analysis of Reactive Oxygen Species (ROS) in Cellular Models of Cerebral Cavernous Malformation Disease

Author(s):  
Andrea Perrelli ◽  
Saverio Francesco Retta
2021 ◽  
Vol 22 (2) ◽  
pp. 567
Author(s):  
Brixhilda Domi ◽  
Kapil Bhorkar ◽  
Carlos Rumbo ◽  
Labrini Sygellou ◽  
Spyros N. Yannopoulos ◽  
...  

Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200–300 nm for BN-PL and 100–150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.


2019 ◽  
Author(s):  
Ke Li ◽  
Lijun Wu ◽  
Wei Lin ◽  
Tianlan Zhao ◽  
Qiang Qi ◽  
...  

Abstract Background: To investigate the clinical, genetic and molecular characteristics of mitochondrial diabetes mellitus (MDM). Methods: Resultant variants were evaluated for evolutionary conservation, allelic frequencies, and structural and functional consequences. The mitochondrial function including mitochondrial tRNAAla levels, protein synthesis, membrane potential, adenosine triphosphate (ATP) production, and reactive oxygen species (ROS) generation were measured using lymphoblastoid cell lines carrying the m.5628T>C mutation and 2 controls .Results: We observed differences in the severity and age of onset in diabetes in affected maternally-related individuals, and through amolecular of the complete mitochondrial genome in this family, we identified a homoplasmic m.5628T>C mutation, located at conventional position 31 of tRNAAla, and we further detected distinct sets of mtDNA polymorphisms belonging to haplogroup L1. The identified mutation was further found be important for tRNA identity and stability. Using cellular models, we were able to determine that the respiratory deficiency caused arising as a consequence of the m.5628T>C mutation led to decreased efficiency of mitochondrial tRNAAla levels, protein synthesis, mitochondrial ATP synthesis and a reduced mitochondrial membrane potential.These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cell lines. Conclusions: These data provide a direct evidence that novel m.5628T>C mutation may be associated with MDM, thus, offering novel insights into the understanding of pathophysiology of MDM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kimiko Kazumura ◽  
Kozo Takeuchi ◽  
Yukiko Hatano ◽  
Akiko Hara ◽  
Toshiyuki Miwa ◽  
...  

AbstractThe previous slide-glass type system could simultaneously detect reactive and highly reactive oxygen species, i.e., superoxide radicals (O2−·) and hypochlorite ions (OCl−) elicited from leucocytes in sample blood, but had some drawbacks, i.e., signal noise from air-flow stirring, potential biohazard risks, etc. because of open samples placed on a slide glass. We overcame these drawbacks by adopting a fluidic-chip container in a new system, which resulted in higher sensitivity and more stable measurements. Using the new system, we conducted a pilot study on nominally healthy volunteers to find whether or not the monitored activities of leukocytes can distinguish more or less unhealthy conditions from healthy ones. At first, healthy volunteers of both genders and of various ages showed that the fluctuation magnitudes (%) of O2−· and OCl− were nearly similar to each other and to that of the neutrophil count fluctuation. These parameters sometimes exceeded the healthy fluctuation range. By comparing these large fluctuations with the data of an inflammation marker C-reactive protein (CRP), the neutrophil count fluctuation and the timings/symptoms of abnormalities found in questionnaire, we could gain information suggesting the factors causing the large fluctuations. The new system could detect bodily abnormalities earlier than CRP or self-aware symptoms.


2019 ◽  
Vol 82 (5) ◽  
pp. 1301-1311 ◽  
Author(s):  
Taotao Ling ◽  
Walter H. Lang ◽  
Jane Craig ◽  
Malia B. Potts ◽  
Amit Budhraja ◽  
...  

2013 ◽  
Vol 34 (1) ◽  
pp. 215-230 ◽  
Author(s):  
Eleni Pontiki ◽  
Christos Kontogiorgis ◽  
Yanan Xu ◽  
Dimitra Hadjipavlou-Litina ◽  
Yuan Luo

2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document